
LOW-FREQUENCY ASYMPTOTIC ANALYSIS OF

SEISMIC REFLECTION FROM A FLUID-SATURATED

MEDIUM

D. B. SILIN, V. A. KORNEEV, G. M. GOLOSHUBIN, AND T. W. PATZEK

Abstract. A low-frequency asymptotic representation of the re-

flection of seismic signal from a fluid-saturated porous medium has

been obtained.

First, derivation of the main equations of the theory of poroelas-

ticity and the pressure diffusion equation, which is routinely used

in well-test analysis, has been reviewed. It has been observed that

both models can be derived from the basic principles of filtration

theory. In addition, Biot’s tortuosity parameter has been related

to the relaxation time in the dynamic Darcy’s law.

Second, the reflection of a low-frequency signal from a plane in-

terface between elastic and elastic fluid-saturated porous media has

been studied. An asymptotic scaling of the frequency-dependent

component of the reflection coefficient has been obtained. Namely,

it has been established that this component is asymptotically pro-

portional to the square root of the product of the reservoir fluid

mobility and the frequency of the signal. The dependence of this

scaling on the dynamic Darcy’s low relaxation time and the Biot’s

tortuosity factor has been investigated as well.

1. Introduction

When a seismic wave interacts with a boundary between elastic and

fluid-saturated media, some energy of the wave is reflected and the rest

is transmitted or dissipated. It is well-known that both the transmis-

sion and reflection coefficients from a fluid-saturated porous medium

are functions of frequency [19, 16, 39, 13]. Recently, low-frequency
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signals were successfully used in obtaining high-resolution images of

oil and gas reservoirs [20, 21, 11] and in monitoring underground gas

storage [25]. Therefore, understanding the behavior of the reflection co-

efficient at the low-frequency end of the seismic spectrum is of special

importance.

The main objective of this paper is to obtain an asymptotic represen-

tation of the reflection of seismic signal from a fluid-saturated porous

medium in the low-frequency domain. More specifically, we derive a

simple formula, where the frequency-dependent component of the re-

flection coefficient is proportional to the square root of the product of

frequency of the signal and the mobility of the fluid in the reservoir.

We derive wave propagation equations from the basic principles of the

theory of filtration. This is done, in particular, to verify that both the

filtration and poroelasticity theories are based on a common founda-

tion. Although we skip details where the calculations are similar to

those in the classical Biot’s works [8, 9, 10], we retain the equations

needed in the further asymptotic analysis.

Indeed, both filtration theory [32, 35, 7, 4] and the theory of poroe-

lasticity [17, 18, 8, 9, 10, 43] study, in particular, fluid flow in an elastic

porous medium. The filtration theory, usually assumes steady-state or

transient processes where the macroscopic transition times are signif-

icantly longer than the transition times of the local microscopic pro-

cesses. The poroelasticity theory includes a model of acoustic wave

propagation in fluid-saturated elastic media, where the macroscopic

transition times are short and, therefore, the concept of steady-state

fluid flow may be inapplicable.

To obtain a system of equations characterizing fluid/solid interac-

tions in a macroscopically homogeneous elastic fluid-saturated porous

medium, we adopt relaxation filtration [2, 30, 29], which employs a re-

laxation time to account for the inertial and non-equilibrium effects

in fluid flow, thus extending the classical Darcy’s law [12, 22, 23].

Originally, Darcy’s law was formulated for steady-state flow [12]. It
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is recognized that non-equilibrium effects are important in two-phase

flow [6, 5], see also [40]. However, due to local heterogeneities, they are

important in single-phase flow as well.

Further, it is demonstrated in Sections 2 and 3 that under different

assumptions, the equations obtained here can be transformed either

into Biot’s wave equations [8, 9, 10], or into the elastic pressure diffusion

equation [32, 28, 4].

In the original Biot’s works [8, 9, 10], the wave equations of poroe-

lasticity were derived from the Hamiltonian least-action principle. In

order to close the system, an introduction of a parameter having dimen-

sion of density was needed. This parameter was related to a dimension-

less tortuosity factor characterizing the complexity of the pore space

geometry in natural rocks. There are several definitions of tortuosity

in the literature, see e.g., [7]. In Biot’s derivation, the tortuosity factor

statistically characterizes the heterogeneity of the local fluid velocity

field [10]. The way this tortuosity factor and the above-mentioned

relaxation time enter the equations leads to the conclusion that they

must be linearly related to each other. The magnitude of the relax-

ation time and, hence, the value of the tortuosity, affects the way the

reflection coefficient depends on frequency. Since the magnitude of the

tortuosity in Biot’s equations ranges, in general, between one and infin-

ity [31], it is very important to know the tortuosity factors for different

types of rock. Microscopic-scale flow modeling on pore networks [34]

can provide such an estimate.

During the last fifty years, a significant effort has been spent on the

investigations of attenuation of Biot’s waves, see e.g., [37, 38] and the

references therein. It has been noticed that there must be a relation

between the dependence of the attenuation on the wave frequency and

the permeability of the reservoir [36]. In many cases, the attenuation

coefficient can be obtained in an explicit, but quite cumbersome, form.

Computation of the reflection coefficient is even more complex because

it additionally requires inversion of a matrix.
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Low-frequency limit of Biot’s theory was studied using homogeniza-

tion technique [3]. In particular, it is obtained that distinction between

Biot’s [8] and Gassman’s [18] theories diminish as the frquency tends to

zero for a variety of media saturated with slightly compressible fluids.

In this study, we obtain a simplified asymptotic expression where

the role of the reservoir fluid mobility is transparent. We focus on the

simplest case of normal reflection of a p-wave. In addition, we assume

that the grains of the solid skeleton are practically incompressible, so

that all deformations of the rock and the pore space are due to the

rearrangements of the grains. The scaling relationship obtained in

Section 6 below has been successfully applied for imaging of oil reservoir

productivity [26].

The layout of the paper is as follows. In the next section, the main

equations of the model are derived from the principles of filtration the-

ory. In Section 3, the obtained relationships are compared with Biot’s

equations and the pressure diffusion model. In Section 5, we define a

dimensionless small parameter for the asymptotic analysis of the known

harmonic-wave solution to the equations of poroelasticity. In the fol-

lowing section, the boundary conditions for the reflection problem are

formulated. An asymptotic expression for the reflection coefficient with

respect to the small parameters introduced in Section 5 is obtained in

Section 6. In Section 7, we elaborate on how the relaxation time and

tortuosity affect the asymptotic analysis.

2. Fluid-solid skeleton interaction equations

Consider a homogeneous porous mediumM whose pore space is filled

with a viscous fluid. The grains of the solid skeleton are displaced by

an elastic wave. It is assumed that a plane p-wave is propagating

along the x-axis of a fixed Cartesian coordinate system. Thus, after

averaging over a plane orthogonal to x, the only non-zero component

of the displacement is the x-component, and the mean displacement

is one-dimensional. Due to the deformation of the skeleton, the grains



LOW-FREQUENCY REFLECTION 5

are rearranged. We assume that the rearrangement occurs through

elastic deformations of the cement bonds between the grains. Such an

assumption is natural in many situations considered in hydrology and

is quite common in the geophysical literature as well, see, e.g., [13].

In general, deformations result in energy dissipation. In this paper,

for simplicity, it is assumed that these energy losses are much smaller

than the losses through viscous friction in the cross-flow of the reservoir

fluid. Further, we assume that the rock is “clean”, so that the total

mass and volume of the bonds are small relative to those of the grains.

Thus, for the bulk density of the “dry” skeleton % we have

% = (1− φ)%g (1)

where %g is the density of the grains and φ is the porosity. If we neglect

the microscopic rotational motions of the grains, the mean density of

momentum of the drained skeleton is given by

%
∂u

∂t
= (1− φ)%g

∂u

∂t
(2)

where u is the mean displacement of the skeleton grains in the x-

direction and t denotes time.

The skeleton deformations change the stress field. We consider only

small variations of parameters near a reference configurations, where all

forces are at equilibrium. It is natural to assume that the shear stresses

are, on average, uniformly distributed over directions orthogonal to

x. In general, even uniformly distributed shear stress influences the

rearrangement of the skeleton. However, the assumption of stiff grains

and small-volume bonds allows us to neglect this influence. The x-

component, σx, of the stress implied by a displacement of the solid

skeleton, u, at a constant fluid pressure, or effective stress [41], can

be measured by the elastic forces acting on a unit (bulk) area in a

plane orthogonal to x. Linear elasticity hypothesis suggests that for

small displacements, the stress σx and the displacement u are linearly
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related:

σx =
1

β

∂u

∂x
(3)

Here β = 1/K is the drained bulk compressibility, or the inverse of

the bulk modulus K. We retain the subscript x in equation (3) just to

emphasize that here we focus on a one-dimensional case only.

The motion of the reservoir fluid can be characterized by the superfi-

cial or Darcy velocityW measured relative to the skeleton. This means,

that if we imagine a small surface element moving along with the local

displacement of the grains, then the volumetric fluid flux through this

surface is equal to the projection of W on the unit normal vector to

the surface. The average velocity vf of the fluid particles relative to

the skeleton is related to the Darcy velocity by equation

φvf =W (4)

The total fluid pressure-related force acting on the solid skeleton is

equal to −∂p
∂x
[35, 43]. A small volume of the medium, δV , contains

%δV mass of rock material and φ%fδV mass of fluid. Here %f is the

density of the fluid. Hence, the momentum of moving fluid per unit

bulk volume is

φ%f

(

∂u

∂t
+ vf

)

= φ%f
∂u

∂t
+ %fW (5)

Thus, the momentum balance per unit bulk volume is:

%b
∂2u

∂t2
+ %f

∂W

∂t
=
1

β

∂2u

∂x2
− ∂p

∂x
(6)

where %b is the bulk density of the fluid-saturated medium:

%b = (1− φ)%g + φ%f = %+ φ%f (7)

Now, let us consider in more detail the motion of the fluid. According

to Darcy’s law, at steady-state conditions,

W = −%f
κ

η

∂Φ

∂x
(8)
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where κ is the permeability of the medium, η is the viscosity of the

fluid and Φ is the flow potential [22, 23]. We consider only small per-

turbations near an equilibrium configuration and the Darcy velocityW

is measured relative to the porous medium. Hence, the gravity term

in the differential of potential Φ is replaced with a term characterizing

additional pressure drop due the accelerated motion of the skeleton

dΦ =
dp

%f
+
∂2u

∂t2
dx (9)

Darcy’s law (8) is for steady-state flow. If the flow is transient, e.g.,

due to abrupt changes in the pressure field, equation (8) may need to be

modified in order to account for inertial and non-equilibrium effects. To

derive the respective equation, we apply argument analogous to [5]. As

the pressure gradient changes, the local redistribution of the pressure

field does not occur instantaneously because it includes microscopic

fluid flow along and between the pores. Thus, the gradient of flow

potential determines some combination of Darcy velocity and “Darcy

acceleration”

Ψ

(

W, τ
∂W

∂t

)

= −%f
κ

η

∂Φ

∂x
(10)

Clearly, Ψ(W, 0) = W . At low-frequency limit, the acceleration compo-

nent is small, hence a linearization with respect to the second parameter

yields

W + τ
∂W

∂t
= −%f

κ

η

∂Φ

∂x
(11)

Here τ is a characteristic redistribution time.

Such a modification of Darcy’s law was proposed by Alishaev [1, 2]

using different assumptions. In multiphase flow, similar considerations

were used to model non-equilibrium effects at the front of water-oil

displacement and spontaneous imbibition [6, 5]. Some estimates of the

relaxation time, based on an interpretation of experiments, were re-

ported in [30, 29, 14]. Apparently, the relaxation time is a function of

the pore space geometry and fluid viscosity η and compressibility βf .

Dimensional analysis of all parameters suggests that τ = ηβfF (κ/L
2),
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where L is the characteristic size of an elementary representative vol-

ume of the medium and F is some dimensionless function. Time τ is

apparently related to the tortuosity factor [10]. This relationship is

discussed in more detail below.

Summing up, we arrive at the following equation characterizing the

dynamics of fluid flow

W + τ
∂W

∂t
= −κ

η

∂p

∂x
− %f

κ

η

∂2u

∂t2
(12)

We remind that both the displacement of the skeleton u and Darcy

velocity W are just small perturbations near some equilibrium val-

ues. The same applies to the fluid pressure p. Only these small vari-

ations have nonzero derivatives. Therefore, we retain only the terms,

which are linear with respect to small perturbations. A system momen-

tum balance equations accounting for convective momentum transport

in terms of microscopic fluid velocities is presented in [33]. In equa-

tions (6) and (12), Darcy velocity is used in conjunction with dynamic

version of Darcy’s low.

The mass balances for the fluid and the solid skeleton are

∂(%fφ)

∂t
= −

∂

(

%fW + φ%f
∂u

∂t

)

∂x
(13)

∂%

∂t
= − ∂

∂x

(

%
∂u

∂t

)

(14)

For the fluid, we apply the isothermal compressibility law [27], that is,

for small fluid pressure perturbation

d%f
%f
= βfdp (15)

Hence, Eq. (13) can be rewritten as

∂φ

∂t
+ φβf

∂p

∂t
= −∂W

∂x
− φ

∂2u

∂x∂t
−W

∂%f
∂x
− 1

%f

∂

∂x
(φ%f )

∂u

∂t
(16)
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Inasmuch as the variations of the parameters are small and only the

perturbed components have nonzero derivatives, the last two terms in

equation (16) are of a higher order and can be neglected.

With ρ = (1− φ)ρg, Equation (14) takes on the form

−∂φ
∂t
+(1−φ) 1

%g

∂%g
∂t
= − 1

%g
(1−φ)∂%g

∂x

∂u

∂t
+
∂φ

∂x

∂u

∂t
−(1−φ) ∂

2u

∂x∂t
(17)

Again, the smallness of the perturbations implies that the first two

terms on the right-hand side of the last equation can be dropped. Fur-

ther on, perturbation of the grain density is a linear function of the

perturbations of the stress and fluid pressure, that is

1

%g
d%g = βgsdσx + βgfdp (18)

where βgs and βgf are the respective compressibility coefficients. Thus,

equation (17) can be written as

∂φ

∂t
= (1− φ)βgf

∂p

∂t
+ (1− φ)

(

1 +
βgs
β

)

∂2u

∂x∂t
(19)

A combination of this last result with equation (16) leads to the fol-

lowing relationship
(

1 + (1− φ)
βgs
β

)

∂2u

∂x∂t
+ (φβf + (1− φ)βgf )

∂p

∂t
= −∂W

∂x
(20)

Under the assumptions formulated above, the compressibility of the

grains is much smaller than the compressibility of the fluid and the

skeleton:

βgf ¿ βf and βgs ¿ β (21)

This means that the deformation occurs only through the porosity per-

turbations. Thus, equation (20) can be further reduced to

∂2u

∂x∂t
+ φβf

∂p

∂t
= −∂W

∂x
(22)

Equation (22) states that the amount of fluid volume packed into a

unit bulk volume per unit time is equal to minus the divergence of the

absolute fluid velocity. The fluid volume can be packed into the bulk

volume because the fluid is compressible and the pressure increases, and
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because the porosity can also increase. Note that mathematically there

is no qualitative difference between equations (20) and (22). Below, we

use the mass balance equation (20) wherever it does not exceedingly

complicate the calculations.

To summarize, we have obtained a closed system of three equa-

tions (6), (12), and (20) with three unknown functions of t and x: the

skeleton displacement u, the fluid pressure p, and the Darcy velocity

W .

3. Relationship to Biot’s poroelasticity and pressure

diffusion equations

In this section, we demonstrate that under the assumptions formu-

lated in Section 2 equations (6), (12), and (20) can be reduced to the

system of equations obtained by Biot [8, 10], see also [15]. At the same

time, neglecting the inertial terms in these equations, leads to the pres-

sure diffusion equation used in hydrology and petroleum engineering for

well test analysis, see [42, 24] or books [28, 4].

We begin with Biot’s theory. We will perform the calculations using

the assumption of grain incompressibility, Eq. (21). As we consider

only small oscillatory deformations of the skeleton and fluctuations of

the fluid flow, a “superficial” displacement of the fluid relative to the

skeleton w can be introduced, so that

W =
∂w

∂t
(23)

Note that inasmuch as w is related by Eq. (23) to the Darcy velocity of

the fluid, it is different from the average microscopic fluid displacement.

Substitution of (23) into equation (22) yields

∂2u

∂x∂t
+ φβf

∂p

∂t
= − ∂2w

∂t∂x
(24)

By integration in t and differentiation in x, we obtain

∂p

∂x
= − 1

φβf

∂2u

∂x2
− 1

φβf

∂2w

∂x2
(25)
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Here we have utilized the assumption of the smallness of the rock-fluid

system oscillations near an equilibrium configuration. Otherwise, due

to the integration, equation (25) should include an unknown function

of x. Now, let us substitute (23) and the result (25) in equations (6)

and (12):

%b
∂2u

∂t2
+ %f

∂2w

∂t2
=

(

1

β
+

1

φβf

)

∂2u

∂x2
+

1

φβf

∂2w

∂x2
(26)

%f
∂2u

∂t2
+ τ

η

κ

∂2w

∂t2
=

1

φβf

∂2u

∂x2
+

1

φβf

∂2w

∂x2
− η

κ

∂w

∂t
(27)

Under the assumptions formulated above, equations (26) – (27) are

equivalent to the Biot system of equations (8.34) [10]:

∂2

∂t2
(%bu+ %fw) =

∂

∂x

(

A11
∂u

∂x
+M11

∂w

∂x

)

∂2

∂t2
(%fu+mw) =

∂

∂x

(

M11
∂u

∂x
+M

∂w

∂x

)

− η

κ

∂w

∂t

Comparing the individual terms, we can establish a relationship be-

tween the relaxation time and the tortuosity factor. Namely, the re-

laxation time τ is related to the dynamic coupling coefficient m [10]

through the inverse mobility ratio η/κ. The dynamic coupling coeffi-

cient is often expressed through the tortuosity factor T : m = T%f/φ.

Hence, for the tortuosity and relaxation time, we obtain the following

relationship:

T = τ
ηφ

κ%f
or τ = T

κ%f
ηφ

(28)

Comparison of the elastic coefficients reveals that under the assumption

of isotropic porous medium and incompressible grains (the Biot-Willis

coefficient α = K/H ≈ 1, and Ku = K +Kf/φ), the Biot coefficients

are constant and equal to

A11 = Ku ≈
1

β
+

1

φβf
and M11 =M = KuB ≈

1

φβf
(29)

where Ku is the undrained bulk modulus, and B = R/H is Skempton’s

coefficient, 1/H being the poroelastic expansion coefficient, and 1/R

the unconstrained specific storage coefficient.
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Now, let us derive the pressure diffusion equation. Assume that

the characteristic time tD of the process is large in comparison with

the relaxation time τ and the displacements of the skeleton are much

smaller then the characteristic length scale of the process L:

tD À τ and u¿ L (30)

Under this assumption, the second order time derivatives of displace-

ment u and time derivatives of Darcy velocity W in equations (6)

and (12) can be dropped:

∂p

∂x
=

1

β

∂2u

∂x2
(31)

W = −κ
η

∂p

∂x
(32)

By integrating equation (31) in x and differentiating in t, we obtain

∂2u

∂t∂x
= β

∂p

∂t
(33)

Formally, integration by x is defined up to a function of time. Assuming

a constant pressure at infinity, this function of time also is constant.

This constant is then cancelled by the differentiation with respect to

t. Finally, by a substitution of equations (32) and (33) into (22), we

obtain

φ(β/φ+ βf )
∂p

∂t
=
κ

η

∂2p

∂x2
(34)

This last equation is the pressure diffusion equation routinely used in

well test analysis [28, 4].

4. Plane compressional wave: an asymptotic solution

Let us consider the system of equations obtained in Section 2. We

introduce the dimensionless pressure

P = φβfp (35)

and the hydraulic diffusivity

D =
κ

φβfη
(36)
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Dividing equation (6) by %b and putting

v2
b =

1

β%b
and v2

f =
1

φβf%b
(37)

we obtain

∂2u

∂t2
+
%f
%b

∂W

∂t
= v2

b

∂2u

∂x2
− v2

f

∂P

∂x
(38)

λf

∂2u

∂t2
+W + τ

∂W

∂t
= −D∂P

∂x
(39)

γ1
∂2u

∂x∂t
+ γ2

∂P

∂t
= −∂W

∂x
(40)

where

λf = %f
κ

η
(41)

is the “kinematic” mobility of the fluid, and

γ1 = 1 + (1− φ)
βgs
β

and γ2 = 1 + (1− φ)
βgf
φβf

(42)

Clearly, λf has the dimension of time. The assumptions (22) imply

that both dimensionless coefficients γ1 and γ2 are close to one. The

system of equations (38)–(40) is similar to Biot’s system, however it

uses a different set of parameters including Darcy velocity and fluid

pressure, which is more typical for filtration theory. Like Biot’s model,

system (38)–(40) admits a solution, which is a sum of slow and fast

waves. Asymptotic analysis of these waves is our next target.

We seek a plane-wave solution to the equations (38)–(40) in the form

u = Use
i(ωt−kx), W = Wfe

i(ωt−kx), P = P0e
i(ωt−kx) (43)

Substitution of Eq. (43) into (38)–(40) and some algebra yield

Wf = −iωγ1Us + ωγ2
P0

k
(44)

Let us introduce two new variables

v =
ω

k
and ξ = − iP0

kUs

(45)
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The Darcy velocity amplitude Wf can be expressed through ξ

Wf = iω(−γ1 + γ2ξ)Us =
ω

k

(

−γ1

ξ
+ γ2

)

P0 (46)

Denote

τD =
D

v2
f

=
κ%b
η
, γv =

v2
b

v2
f

=
φβf
β

and γ% =
%f
%b

(47)

The parameters γv and γ% are dimensionless. Taking into account equa-

tion (41),

λf = γ%τD (48)

The dimensionless relaxation time θ and dimensionless angular fre-

quency ε are defined as

θ =
τ

τD
and ε = τDω (49)

Uisng these definitions, we obtain the follwoing quadratic equation we

obtain a quadratic equation with respect to ξ:

(γ2 + iε (−γ2γ% + θγ2)) ξ
2

+(−γ1 + γ2γv + iε [−1 + γ1γ% + (γ% − θγ1) + θγ2γv]) ξ

+(−γ1γv + iεγv(γ% − τγ1)) = 0

(50)

At ε = 0, Equation (50) admits two real roots

ξ
(1)
0 =

γ1

γ2

and ξ
(2)
0 = −γv (51)

By virtue of equations (21) and (42), the absolute value of the first

root ξ1
0 is close to unity, whereas the absolute value of the second one

is equal to
φβf
β
, that is usually larger than one. We obtain two real

asymptotic values for the complex velocity v

v
(1)
0 = 0 and v

(2)
0 = vf

√

γv +
γ1

γ2

(52)

The first solution corresponds to the slow wave, whereas the second

one is related to the fast wave. Naturally, this appearance of slow and

fast compressional waves is in agreements with Biot’s theory [8, 10].
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The exact solution to Eq. (50) can be easily obtained, but the ex-

pression is quite cumbersome. Instead, let us look for an asymptotic

solution. Note that if we assume the permeability κ ∼ 1 Darcy, that is
κ ∼ 10−12 m2, the viscosity of the fluid η ∼ 1 cP = 10−3 Pa-s, and the

bulk density of the rock %b ∼ 103 kg/m3, then τD ∼ 10−6 and ε ¹ 10−3

for frequencies ω not exceeding ∼ 1 kHz. Inasmuch as γ1 and γ2 are

of the order of unity, ε (more accurately, iε) is a small parameter in

equation (50) and we can look for a solution in the form

ξ = ξ0 + ξ1iε− ξ2ε
2 . . . (53)

Using the notations

A0 = γ2 A1 = −γ2γ% + θγ2

B0 = γ2γv − γ1 B1 = −1 + γ%(1 + γ1) + θ(γ2γv − γ1)

C0 = −γ1γv C1 = γv(γ% − θγ1)

(54)

we obtain

ξ1 = −
A1ξ

2
0 +B1ξ0 + C1

2A0ξ0 +B0

(55)

Thus, the solutions corresponding to the slow and fast waves have,

respectively, the following forms

ξ
(1)
1 = γv

1− γ%(γ2γv + γ1)

γ1 + γ2γv
(56)

and

ξ
(2)
1 =

1

γ2

γ1 − γ%(γ2γv + γ1)

γ1 + γ2γv
(57)

Note, that since both γ1 ≈ 1 and γ2 ≈ 1, equations (56) and (57) can
be simplified

ξ
(1)
1 = γv

1− γ%γv − γ%
1 + γv

(58)

ξ
(2)
1 =

1

γ2

γ1 − γ%γv − γ%
1 + γv

(59)

In particular, ξ
(1)
1 and ξ

(2)
1 are independent of the permeability of the

formation and the viscosity of the fluid. Note that the relaxation time
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also disappears from the first-order approximation of ξ for both the

slow and fast wave. The latter circumstance is discussed in Section 7

below.

We further obtain that

v(1) = ±vb

√

iε

γ1 + γ2γv
+ . . . (60)

and

v(2) = ±vf
√

γv +
γ1

γ2

+ vfV1iε+ . . . (61)

where V1 is the first coefficient of the expansion of V in the powers of

iε. The last two equations, in a combination with equation (56), imply

that

k(1) = ± 1

τDvb

√
γ1 + γ2γv

√
−iε+ . . . (62)

k(2) = ± 1

τDvf

1
√

γv +
γ1

γ2

ε+ . . . (63)

The imaginary part of k must be negative. Therefore, from (62), we

infer that

k(1) =
1

τDvb

√
γ1 + γ2γv

1− i√
2

√
ε+ . . . (64)

and, respectively,

v(1) = vb

√

1

γ1 + γ2γv

1 + i√
2

√
ε+ . . . (65)

By virtue of equations (51) and (46)

Wf = −iω(γ1 − γ2ξ)Us (66)

Furthermore, using equations (53), we get for the fast wave

W fast
f = −εωγ2ξ

(2)
1 U fast

s + . . . (67)

The right-hand side of the last equation is first-order small with respect

to ε. In other words, at low frequencies, the fast wave is almost a

coherent oscillation of the skeleton and the fluid. At the same time,
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for the slow wave, the Darcy velocity amplitude is comparable with the

amplitude of the time-derivative of the displacement

W slow
f = −iω (γ1 + γ2γv)U

slow
s + . . . (68)

%1, v1

%2, v2, κ

Medium 1

Medium 2

Impermeable interface
x = 0

Displacement

Figure 1. One dimensional propagation of a low-

frequency disturbance perpendicular to the impermeable

interface between medium M1 and porous, permeable

solid M2 fully saturated with a liquid.

5. Reflection: boundary conditions

Consider a normal incidence of a compressional elastic wave upon

a plane interface x = 0 separating media M1 and M2 occupying half-

spaces x < 0 and x > 0, respectively, see Figure 1. MediumM1 is ideal

elastic solid, whereas mediumM2 is fluid-saturated medium like the one

studies in the previous sections. The elastic properties of M1 and solid

skeleton ofM2 are characterized by the bulk densities %i and the speeds

of sound vi, i = 1, 2. We assume that the permeability of medium M2

is characterized by a coefficient κ and the boundary between the media

is impermeable to fluid flow. To calculate the reflection coefficient,
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boundary conditions at the interface between the media, i.e., at x = 0,

must be formulated.

Under the assumptions of Section 3, and neglecting the heterogenei-

ties of the materials, we can assume that the displacements of the solid

particles composing the media are parallel to x, and so is the flux of the

fluid in the pore space. There is an important difference between the

fluid and solid motion. The solid particles move more or less coherently

near the respective equilibrium positions, whereas fluid particles move

in a much more dispersed manner caused by the complexity of the pore

space geometry. Only the mean volumetric flux or Darcy velocity of

the moving fluid is parallel to x. This quantity is the result of averaging

the microscopic fluid velocity field over a representative volume. In the

case under consideration, such an averaging can be performed over a

plane x = Const > 0.

Denote by u1 and u2 the displacements of the solid particles in media

M1 and M2, respectively.

First, the continuity of the displacements and microscopic stresses

requires that

u1|x=0 = u2|x=0 (69)

− 1
β 1

∂u1

∂x

∣

∣

∣

∣

x=0

= − 1
β2

∂u2

∂x

∣

∣

∣

∣

x=0

+ φp|x=0 (70)

Here we use the fact that the area of the contact between medium

M1 and the fluid saturating medium M2 is a part of the total area

proportional to the porosity of medium M2.

Zero fluid flux through the boundary implies

Wf |x=0 = 0 (71)

Boundary conditions (69)–(71) will be used in the next section for

investigation of the reflection coefficient.
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6. Reflection coefficient

To calculate the reflection coefficient, we substitute in boundary con-

ditions (69), (70) and (71) the sum of incident and reflected displace-

ments in medium M1

u1 = U1e
i(ωt−k1x) +RU1e

i(ωt+k1x) (72)

and the sum of slow and fast waves transmitted into medium M2 ex-

pressed in terms of the fluid pressure and Darcy velocity variations

p =
1

φβf
P s

0 e
i(ωt−ksx) +

1

φβf
P f

0 e
i(ωt−kfx) (73)

u2 = U s
2e

i(ωt−ksx) + U f
2 e

i(ωt−kfx) (74)

Utilizing the first equation (46), we obtain















































(1 +R)U1 = U s
2 + U f

2

ik1

β1

(1−R)U1 =
iks2
β2

U s
2 +

ikf2
β2

U f
2

+
P f

0 + P s
0

βf

0 = iω(−γ1 + γ2ξ
s)U s

2 + iω(−γ1 + γ2ξ
f )U f

2

(75)

Further, by virtue of equation (45), we get























−(1 +R)U1 + U s
2 + U f

2 = 0

−k1

β1

(1−R)U1 + ks2

(

1

β2

+
ξs

βf

)

U s
2 + kf2

(

1

β2

+
ξf

βf

)

U f
2 = 0

(γ1 − γ2ξ
s)U s

2 + (γ1 − γ2ξ
f )U f

2 = 0

(76)

We assume zero attenuation in medium M1, therefore k1 > 0 is real

and ωk1 = v1 is the p-wave velocity in this medium. Note that v1

is a characteristic of the medium M1, which does not depend on the

frequency.
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Dividing through by U1 and putting Z1 = R, Z2 = U s
2/U1, and

Z3 = U f
2 /U1, we obtain the following system of equations



























−Z1 + Z2 + Z3 = 1

ωZ1 + v1k
s
2

(

β1

β2

+ ξs
β1

βf

)

Z2 + v1k
f
2

(

β1

β2

+ ξf
β1

βf

)

Z3 = ω

(γ1 − γ2ξ
s)Z2 + (γ1 − γ2ξ

f )Z3 = 0

(77)

Hence, using equations (63) and (62) and notation (49), the system of

equations (77) can be presented in the following asymptotic form























−Z1 + Z2 + Z3 = 1

√
εZ1 + A22Z2 + A23

√
εZ3 =

√
ε

(

A
(1)
32 + A

(2)
32 iε

)

Z2 + A33iεZ3 = 0

(78)

The expressions for the coefficients Aij can be obtained from the as-

ymptotic formulae (53), (56), (57), (63), and (64):

A22 =
v1

vb

√
γ1 + γ2γv γs

1− i√
2

(79)

A23 =
v1

vf

√

γ2

γ1 + γ2γv
γf (80)

A
(1)
32 = γ1 + γ2γv (81)

A
(2)
32 = −γ2γv

1− γ%(γ2γv + γ1)

γ1 + γ2γv
(82)

A33 = −γ%γ1 − γ1 + γ%
γ1 + γ2γv

(83)

Here we used the notations

γs = β1

(

1

β2

− γv
1

βf

)

and γf = β1

(

1

β2

+
γ1

γ2

1

βf

)

(84)

From the last equation (78),

Z2 = −
A33

A
(1)
32

iεZ3 + . . . (85)
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This means that at low frequencies (i.e., at ε→ 0), the slow wave dis-

placement is scaled with the velocity of fast displacement and, there-

fore, is one order of magnitude smaller. In other words, the slow part

of the signal practically does not propagate and is mostly responsible

for the reflection.

Substitution of (85) into the first two equations (78) yields






















−Z1 +

(

1− A33

A
(1)
32

iε

)

Z3 = 1

√
εZ1 +

(

A23

√
ε− A22

A33

A
(1)
32

iε

)

Z3 =
√
ε

(86)

Cancelling the
√
ε in the second equation (86) and dropping terms of

the order higher than
√
ε, we obtain that

Z3 = Z1 + 1 (87)

Consequently,

Z1 =

1− A23 + A22
A33

A
(1)
32

i
√
ε

1 + A23 − A22
A33

A
(1)
32

i
√
ε

(88)

Again, retaining only the terms of the order
√
ε, we finally obtain

Z1 =
1− A23

1 + A23

+
√
2
Ã22A33

A
(1)
32

1

(1 + A23)2
(1 + i)

√
ε (89)

where

Ã22 =
v1

vb

√
γ1 + γ2γv γs (90)

Analysis of the expression (80) shows that in practical situations the co-

efficient A23 is greater than one. Therefore, the frequency-independent

component of the reflection coefficient is negative. The frequency-

dependent component of the reflection has the same sign as Ã33. The

latter is positive if and only if

γ% <
γ1

1 + γ1

(91)
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The right-hand side of the last inequality is approximately equal to 0.5.

Hence, roughly speaking, Ã33 is positive when the fluid density is at

least twice less than the bulk density of the saturated medium. In such

a case the maximum of the absolute value of the reflection coefficient

is attained at ε = 0. At the same time, for dense fluids, the first-order

term of the asymptotic expansion, which is proportional to the square

root of ε, may vanish and the first frequency-dependent term will be

linear. In this case, the tortuosity coefficient becomes an important

factor.

In the original variables (47), equation (89) takes on the form

R =
1− A23

1 + A23

+
√
2
Ã22A33

A
(1)
32

1

(1 + A23)2
(1 + i)

√

κ%b
η
ω (92)

Note that the last equation relates the reflectivity to the frequency

through the factor of τD =
κ%b
η
having the dimension of time. It

involves a property of the rock, the permeability coefficient, a property

of the fluid, the viscosity, and a property of the coupled fluid-rock

system, the bulk density. The frequency scaling proposed here is similar

to but not the same as the scaling introduced in [19].

7. The role of relaxation time and tortuosity

The asymptotic calculations presented above show that the dimen-

sionless parameter θ, related to both relaxation time and tortuosity

factor, disappears from the first-order terms. However, if θ is large,

then some expansions obtained in Sections 4 and 6 must be reviewed.

Practically, the range of frequencies is limited by the specifications of

the available tools. Therefore, it may happen that within the range of

frequencies available for analysis the product θε is not negligibly small,

and the theoretical passage to the limit as ε → 0 should be replaced

with analysis at some intermediate finite values of ε. In such a case,

the asymptotic analysis must be performed differently. In this section,

we consider two examples of such analysis.
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First, let us assume that within the range of available frequencies, the

parameter εθ is of the order of one. In original variables, this condition

is equivalent to

ω ∼ 1
τ

(93)

Regrouping the coefficients in the Equation (50) and dividing through

by 1 + iθε, we obtain

(A0 + Aθ
1iε)ξ

2 + (B0 +Bθ
1iε)ξ + C0 + Cθ

1 iε = 0 (94)

where the coefficients with zero indices are the same as those in equa-

tion (54), and

Aθ
1 = − γ2γ%

1 + iθε

Bθ
1 =

−1 + γ%(1 + γ1)

1 + iθε

Cθ
1 =

γvγ%
1 + iθε

(95)

Hence, the frequency-independent zero-terms of asymptotic expansions

of the solutions ξ are the same as in Equation (51). To calculate the

first order coefficients, we note that formally the coefficients (95) are

equal to the respective coefficients in Equations (54) evaluated at τ = 0

and divided by 1 + iθε. This fact, in conjunction with the observation

that the asymptotic expansion of the reflection coefficient (92) does

not depend on τ , significantly simplifies the calculations. Indeed, for

the first-order coefficients of asymptotic expansion for ξ we can reuse

equations (56) and (57) if we put there τ = 0 and multiply the right-

hand sides by an additional factor of
1

1 + iθε
. Clearly, the calculations

for the first order terms of expansions of v and k can be carried out in

a similar manner. The final result is that the reflection coefficient in

the asymptotic expression (92) takes on the form

R =
1− A23

1 + A23

+ 2
A22A33

A
(1)
32

1

(1 + A23)2

√
i− θε

√

κ%b
η
ω (96)

Thus, in a case where τω = O(1), the relaxation time and tortuosity

affect both the amplitude and the phase shift of the reflected signal.



24 D. B. SILIN, V. A. KORNEEV, G. M. GOLOSHUBIN, AND T. W. PATZEK

Now, consider another extreme situation where θ À 1, so that after

a division of equation (50) by θ all terms with θ in the denominator

can be neglected. In such a case, we obtain a quadratic equation

iε(A0ξ
2 +B0ξ + C0) = 0 (97)

The latter implies that the frequency dependence of ξ (and, therefore,

of the reflection coefficient as well) vanishes. Therefore, at a very large

relaxation time (or, equivalently, at a very large tortuosity), the inertial

term in equation (39) makes the dissipation term on the right-hand

side unimportant. Consequently, the fluid-saturated medium acts as

an elastic composite medium and we arrive at a classical frequency-

independent elastic wave reflection.

8. Conclusions

Equations of elastic wave propagation in fluid-saturated porous me-

dia have been obtained from the basic principles of filtration theory. It

has been demonstrated that under different assumptions, these equa-

tions can be reduced either to Biot’s poroelasticity model or to the

pressure diffusion equation. The tortuosity factor entering Biot’s equa-

tions has been expressed through the relaxation time from the dynamic

version of Darcy’s law. This result can be used for evaluating tortuos-

ity from a macroscopic flow experiment. The low-frequency asymptotic

behavior of the reflection of a plane seismic wave from an interface be-

tween an elastic medium and fluid-saturated porous medium has been

investigated. The frequency-dependent component of the reflection co-

efficient has been scaled with the square root of the characteristic time,

which depends on the reservoir fluid mobility. The dependence of this

characteristic time on the properties of the medium and the fluid has

been investigated. The frequency-dependent component of the reflec-

tion coefficient affects both the amplitude and the phase of the reflected

signal. Another important conclusion implied by the obtained result is
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that the nature of dependence of the reflection coefficient on the fre-

quency is in energy dissipation by viscous friction in fluid flow in the

pore space, rather than in the contrast between the elastic properties

of the overburden and reservoir rocks.

The obtained asymptotic reflection signal scaling has been success-

fully applied for imaging the productivity of hydrocarbon reservoir [26].
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