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Lignin is one of the most abundant aromatic biopolymers and a

major component of plant cell walls. It occurs via oxidative

coupling of monolignols, which are synthesized from the

phenylpropanoid pathway. Lignin is the primary material

responsible for biomass recalcitrance, has almost no industrial

utility, and cannot be simply removed from growing plants

without causing serious developmental defects. Fortunately,

recent studies report that lignin composition and distribution can

be manipulated to a certain extent by using tissue-specific

promoters to reduce its recalcitrance, change its biophysical

properties, and increase its commercial value. Moreover, the

emergence of novel synthetic biology tools to achieve biological

control using genome bioediting technologies and tight

regulation of transgene expression opens new doors for

engineering. This review focuses on lignin bioengineering

strategies and describes emerging technologies that could be

used to generate tomorrow’s bioenergy and biochemical crops.
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Introduction
In its effort to make cellulosic biofuel production more

cost-effective, the bioenergy field has necessarily focused

much of its attention on plant cell walls. Lignin, a major

component of cell walls, is the third most-abundant

biopolymer and the largest available resource of natural

aromatic polymers (Figure 1a). It is mainly composed of

the monolignols p-coumaryl, coniferyl, and sinapyl alco-

hols which give rise to the p-hydroxyphenyl (H), guaiacyl

(G) and syringyl (S) lignin units [1]. Unfortunately, it is
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also the primary contributor to the high cost of lignocel-

lulosic sugar production, because cell wall polysacchar-

ides are encrusted with lignin which make them highly

resistant to extraction and enzymatic hydrolysis [1,2].

Moreover, lignin has almost no commercial value aside

from its role as a source of heat, and it is generally treated

as a waste product [3].

Lignin has been a target of genetic manipulation for

several decades because its content in biomass is inver-

sely correlated with its forage digestibility and kappa

value in the pulping industry [4,5]. Lignin biosynthesis

is well-characterized and all the enzymes required for the

synthesis of its three major building blocks — called

monolignols — are well-known and highly-conserved in

all vascular plants [6,7]. Unfortunately, lignin cannot be

simply removed from growing plants without causing

deleterious developmental effects [8]. Genetic manipula-

tion trials using natural mutants or silencing strategies

have failed because they drastically reduced lignin con-

tent in a non-selective way. Nevertheless, there are cases

in which mild genetic manipulations have been used to

moderately reduce lignin content or modify its compo-

sition in biomass, modestly improving saccharification

efficiency, forage digestibility, and pulping yield [9].

These approaches are still rather limited.

Novel strategies need to be developed to reduce lignin

content further, without altering plant development or

causing undesirable effects. Classical lignin-modification

methods typically repress the expression or activity of

lignin biosynthetic genes. They require identification of

natural defective alleles, the screening of single-nucleotide

polymorphisms (SNPs) from mutant populations (usually a

labor-intensive process) or the development of RNAi-

based gene-silencing approaches. The limit of all these

approaches is the lack of tissue specificity because every

cell carries the same defective allele or silenced gene since

RNAi move from cell-to-cell and affect most of the tissues

in the plant [10]. Moreover, they affect not only the lignin

biosynthesis pathway, but also have indirect effects on

other metabolic routes connected to the phenylpropanoid

and monolignol pathways. The phenylpropanoid pathway,

for example, generates a wide array of secondary metab-

olites that contribute to all aspects of plant development

and plant responses to biotic and abiotic stresses [11].

Recently, researchers have developed more elaborate

approaches for lignin modification and employed tis-

sue-specific promoters to reduce the risk of disturbing

other phenylpropanoid-derived pathways in non-lignified

tissues [12��,13��]. The utilization of such promoters is
Current Opinion in Biotechnology 2014, 26:189–198
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Figure 1

(a) (b) Lignin polymer models for lignin bioengineered plants
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Lignin polymer models. (a) Lignin polymer models for wild type plants; (b) lignin polymer models for lignin bioengineered plants. Bioengineered lignin is

exclusively composed of representative unusual monolignols to increase lignin value; to facilitate lignin degradation (lignin zipper); to reduce lignin–

polysaccharide interactions; or to fluorescently label lignin.
challenging because most of the lignin genes (PAL, C4H,

4CL, HCT, C3H, among others) belong to the phenyl-

propanoid pathway [14�]. Use of the corresponding

promoters for engineering purposes may affect the bio-

synthesis of associated metabolites such as flavonoids,

suberin, coumarins, phenolic volatiles, or hydrolyzable

tannins. On the other hand, most promoters of secondary

cell-wall biosynthetic genes (CesAs, GTs, or lignin genes)

[15] are expressed in both vascular bundles and inter-

fascicular xylem fibers, raising concerns that lignin modi-

fication would affect the integrity of vessels. Vessel-

specific and fiber-specific genes (and corresponding pro-

moters) were identified in few species and their number
Current Opinion in Biotechnology 2014, 26:189–198 
remains limited (VNDs, NSTs, SNDs, WNDs, Lac17 [16–
20]). Single-promoter-driven transgene expression, which

can confer both adequate spatio-temporal expression and

transcription strength for optimal engineering, is con-

sequently difficult to achieve. Furthermore, using several

copies of the same promoters for engineering may lead to

silencing issues, including the silencing of endogenous

promoters if they share high sequence similarities. How-

ever, adjusting transgene expression to optimal levels and

restricting it to specific cells at particular developmental

stages will reduce undesirable side effects. Ideally, newly

emerging techniques will be combined with tissue-specific

promoters to meet the challenges associated with plant
www.sciencedirect.com
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metabolic engineering, particularly those involving manip-

ulation of the phenylpropanoid pathway. In this review, we

will address important aspects in the engineering of lignin

that involve the manipulation of its content, composition,

and distribution. First we will focus on emerging synthetic

biology tools that can fine-tune transgene expression and

improve their spatio-temporal expression. We will con-

clude with the presentation of novel approaches for manip-

ulation of lignin to make it more suitable for various

applications such as bioenergy and biochemical production

(Figure 1b).

Synthetic biology tools for lignin engineering
Genome bioediting tools

Creation of biological tools for targeted genome manip-

ulation is an important goal in molecular biology. Such

tools have an essential role in reverse genetics, and their

development will have fundamental implications in bio-

technology applications ranging from gene therapy to the

production of chimeric plants. For example, tissue-

specific promoters could be used to express these novel

biological tools to create SNPs in key genes to render

them defective only in target tissues. Using such an

approach, the target genes present in meristematic and

meiotic cells would be SNP-free. Major progress has been

made in the development of crucially important genome

bioediting tools, as exemplified by zinc-finger nucleases

(ZFNs), transcription activator-like effector nucleases

(TALENs), and the clustered, regularly interspaced,

short palindromic repeats (CRISPR)/CRISPR-associated

(CAS) system [21�]. These various genome bioediting

tools share a common principle: the utilization of engin-

eered endonucleases is associated with customizable

DNA binding elements. Directed by the DNA binding

elements, endonucleases cleave at the target loci and

generate DNA double-strand breaks (DSBs). DSBs are

subsequently repaired by one of the two cellular DNA

repair mechanisms: non-homologous end joining

(NHEJ), or homologous recombination (HR). Repair

by NHEJ frequently introduces mutations, resulting in

gene interruption at the target locus.

DNA-binding elements in ZFNs and TALENs are com-

posed of modular protein motifs [22–24]. An individual

ZF primarily recognizes DNA sites of 3 bp. To establish

recognition specificity, arrays of ZF units connected by

linker sequences recognize DNA sequences 9–18 bp in

length [23]. The DNA-binding motifs in TALEs present

as near-perfect repeats, typically 34 amino acids in length.

Repeat-variable di-residues (RVDs), usually occurring at

residues 12 and 13, designate the base pair or nucleotide

recognition code in a one-to-one manner [22–24]. Since

the first demonstration of yellow gene interruption in

Drosophila melanogaster in 2002 [25], various ZF-effector

combinations have been applied in genome bioediting of

diverse organisms including flies, moths, zebrafish, rats,

and humans [21�,26]. Following the pioneering work
www.sciencedirect.com 
done with ZF-effectors, genome bioediting using

TALE-effectors advanced rapidly since the first

TALENs were reported in 2010 [27]. ZFNs and

TALENs are also applied to generate genetically engin-

eered crop plants, such as herbicide-tolerant Zea mays [28]

and disease-resistant rice [29�].

Some bacteria and archaea genomes contain the CAS

protein operon followed by CRISPR arrays, which are

composed of direct repeats interspersed by small seg-

ments (protospacers) adopted from invading DNAs.

Transcription of a CRISPR array, followed by enzymatic

cleavage, yields short mature CRISPR RNA (crRNA).

Through base pairing with a protospacer sequence in the

invading DNA, crRNA guides the targeted degradation of

invading DNA by recruiting CAS nucleases. A CRISPR/

CAS genome bioediting system was developed based on

the Type II CRISPR system from Streptococcus pyogenes,
which contains the minimal CRISPR machinery com-

posed of a single CAS9 protein, a crRNA with comp-

lementary sequence to the target site, and a trans-

activating RNA (tracrRNA) that forms a hairpin with

crRNA. A modified CRISPR/CAS9 system has been

shown to drive targeted DNA cleavage in vitro
[30,31��] and was also used to induce mutations and edit

genetic loci of interest in eukaryotes such as mouse and

human cell lines [32,33��], but thus far not in plants.

RNA-guided genome editing avoids intrinsic limitations

in protein-guided genome editing, such as off-target

mutagenesis activity due to imperfect protein-DNA

recognition. RNA-guiding sequence in crRNA is readily

programmable compared to the substantial effort

required to generate customized DNA binding proteins.

CRISPR/CAS9 also offers the possibility of multiplex

genome bioediting. In addition, the CAS9 protein can

be mutated to DNA nickase [30] to promote precise

genome editing through HR. Cong et al. [32,33��] con-

sistently detected no indels induced by a CRISPR/CAS

nickase system [32,33��]. When a homology repair tem-

plate was provided, a pair of restriction sites was inserted

precisely into the target loci with the CRISPR/CAS

nickase system [30]. Despite the apparent benefit of

RNA-guided genome bioediting and its broad application

potential, the CRISPR/CAS9 bioediting system is still in

its infancy. To date, no application of CRISPR/CAS9 has

been reported in plants. Extensive studies are required to

evaluate its targeting specificity and effectiveness.

These genetically encoded bioediting tools could be

used to introduce SNPs into essential lignin genes exclu-

sively in targeted tissue such as fiber (Figure 2). Using a

fiber-specific promoter (e.g. pNST, pLAC17) to drive the

expression of ZFNs, TALENs or CAS9 designed to

recognize the genomic sequence of a key lignin biosyn-

thetic gene (e.g. C4H, C3H, HCT, or CCR1) would

repress lignin biosynthesis only in fiber cells without

affecting the lignification of vessel cells and other
Current Opinion in Biotechnology 2014, 26:189–198
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Figure 2
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New strategies enable mutifaceted genetic engineering of plants. (a) Genome bioediting tools. Black box, endogenous lignin locus (target of editing);

grey arrow, fiber specific promoter used to drive the expression of the bioediting gene; red box, bioediting gene: ZFNs, TALENs or CRISPR/CAS9; red

star, SNP generated when the genome bioediting gene is expressed. (b) Transgene regulation tools. Grey arrow, fiber (pFib) or vessel (pVes) specific

promoter; yellow box, gene encoding the OsL5 protein with the alternative splicing cassette shown in the same color inserted in transgenes (yellow

circle); blue box, gene encoding the Cys4 protein with its cognition sequence shown in the same color inserted in transgenes (blue circle); black arrow,

secondary cell wall promoter (pCWII); red box, engineered gene: gene used to manipulate lignin composition which has been engineered with

transgene regulation tool (yellow circle, OsL5 alternative splicing cassette; blue circle, Cys4 cognition sequence).
phenylpropanoid-derived pathways active in non-ligni-

fied tissues. Such approach would offer greater potentials

than the approach developed by Yang et al. [34] that

consists of complementing a lignin mutant with a vessel

specific promoter which restored the phenylpropanoid

pathway only in vessels. However, it is also important to

note that expression of biological editing systems has to

be tightly controlled, as editing is irreversible and a leaky

expression could be lethal to the engineered organism.

Therefore, it will be important to use these tools with

additional regulatory controls such as those described

below.

Transgene regulation at the post-transcriptional level

The ability to control stringently the spatial and temporal

expression of a transgene, as well as its expression level, is

an important requirement for successful genetic engin-

eering. It allows optimal tradeoffs such plant fitness

versus trait performance (e.g. cell-wall recalcitrance).

To attain such perfection, utilization of tissue-specific

promoters is rarely sufficient, and additional transcrip-

tional or translation controls typically need to be imple-

mented. The rapid emergence of new technologies will

likely offer new opportunities to further optimize trans-

gene expression that will be worthy of further exploration.

In diverse plant lineages, the expression of transcription

factor IIIA (TFIIIA) is controlled by a splicing cassette,

which includes a regulatory exon flanked by two introns

[35]. The regulatory exon encodes a premature termin-

ation codon that targets the transcript for nonsense-

mediated decay. Binding of ribosomal protein L5 to
Current Opinion in Biotechnology 2014, 26:189–198 
the splicing cassette triggers exon skipping and allows

the expression of the full-length TFIIIA protein. The

alternative splicing machinery controlling TFIIIA

expression has been adopted to regulate transgene

expression [36��]. The splicing cassette is structurally

modified to interact specifically with rice L5 protein

(OsL5) but not endogenous L5 proteins in dicots (such

as tobacco or Arabidopsis). The insertion of the modified

splicing cassette in the encoding sequence of GFP repor-

ter protein showed traceless expression when expressed

alone and a �97-fold expression activation in the pre-

sence of OsL5 protein. This result indicates that the

expression of a transgene with the splicing cassette

inserted in the exon is strictly controlled by the presence

of OsL5. This system could be readily adopted as a

promoter stacking strategy, that is, when the transgene

and OsL5 are expressed under promoters with different

characteristics. The resulting expression of the transgene

is defined by the activities of both promoters.

In CRISPR/CAS machinery, maturation of crRNA

requires cleavage in each repeat sequence of the pre-

cursor crRNA by dedicated endoRNase [37]. In Pseudo-
monas aeruginosa strain UCBPP-PA14, endoRNase Cys4

selectively recognizes and cleaves a 28-nucleotide (nt)

repetitive sequence in the CRISPR repeats [38,39]. Qi

et al. [40��] utilized the Cys4 cleavage system in Escher-
ichia coli to achieve physical separation of genetic

elements of transgenes at the transcript level. In addition,

when Cys4 cognition sequence is inserted in frame with a

reporter gene, Cys4-controlled transgene silencing was

demonstrated in both bacteria and yeast systems [40��].
www.sciencedirect.com
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The various lignin manipulation strategies discussed later

may be broadly classified into two categories: novel lignin

generation and lignin reduction. Generation of novel

lignin or monolignol replacement may be introduced into

both vessel and fiber tissues by using promoters of lignin

biosynthetic genes or secondary cell wall genes to drive

transgene expression. However, a promoter-stacking

strategy with the OsL5 system may be applied to add

strength control for transgene expression. By contrast,

lignin reduction strategies using either genome bioedit-

ing or transgene expression require a more stringent

control, that is, one that is restricted to fiber cells so that

vessel lignification occurs normally and the general phe-

nylpropanoid will not be affected constitutively. Such

cell-type specificity can be achieved by utilization of the

OsL5 or Cys4 systems. With the OsL5 system, the spli-

cing cassette will be introduced into the transgene (e.g.

encoding an enzyme that depletes monolignol biosyn-

thesis intermediates) whose expression is driven by lignin

( pC4H, pHCT) or other secondary cell wall ( pIRX8,

pIRX5) promoters of different strengths. OsL5 can be

expressed under the control of a fiber-specific promoter

( pNST) to further restrict the transgene expression in

fiber cells. With the Cys4 system, expression of the

transgene (harboring the Cys4 cognition sequence) driven

by lignin or other secondary cell wall promoters can be

eliminated from vessel cells by expressing Cys4 in vessel

cells. Furthermore, it is envisioned that the OsL5 and

Cys4 systems can be used to regulate complex multigenic

pathways by incorporating the regulatory sequence (the

splicing cassette or the Cys4 cognition sequence) into

each of the genes to be regulated. In such cases, a single

switch for multiple gene regulation would be necessary. A

simplified model summarizing the emerging techniques

for plant engineering is presented in Figure 2.

Rerouting the lignin pathway and lignin
replacement by novel monolignols
Rerouting of the lignin pathway

The various strategies described previously can be

employed to reduce lignin in specific tissues (i.e. fibers)

by expressing enzymes that use intermediates from the

lignin pathway. For example, the recently described

monolignol 4-O-methyltransferase is a promising case

study of enzyme engineering conducted specifically to

reduce the availability of polymerizable monolignols

[13��]. More generally, fungi and bacteria are great

sources for the discovery of new enzymes active on lignin

intermediates, such as the newly characterized caffeoyl-

CoA dioxygenase [41].

In a similar fashion, known biosynthetic enzymes could be

used to produce several phenylpropanoid-derived metab-

olites at the expense of lignin. These metabolites includes

flavonoids, stilbenes, coumarins, curcuminoids, benzalace-

tones, hydoxycinnamate esters, and amides synthesized

from hydroxycinnamoyl-CoAs; lignans, neolignans, and
www.sciencedirect.com 
phenylpropene volatiles such as eugenol and isoeugenol

produced from coniferyl alcohol; and benzenoid/phenyl-

propanoid volatiles derived from phenylalanine and cin-

namate. Interestingly, increasing these metabolites may

offer other potential benefits in addition to lignin

reduction, such as improving resistance to various biotic

and abiotic stresses or enhancing a plant’s nutritional value.

Identification of transport mechanisms for apoplast target-

ing of some of these phenylpropanoid-derived metabolites

should be investigated further. Several biomimetic studies

showed their possible coupling with lignin, which, in some

cases, resulted in improved cell-wall digestibility or fer-

mentation [42–46]. These observations can be explained

by the structure of these metabolites, which have the

characteristics of ‘novel monolignol candidates’ for redu-

cing lignin recalcitrance.

Novel monolignol candidates

Producing in planta alternative lignin monomers to

reduce lignin recalcitrance is a concept that has recently

emerged. These monomers should possess a phenolic

function containing a hydroxyl group, at the C4 position

on the ring, for radicalization and coupling to the lignin.

Incorporation of the novel monomers could, depending

on their structure, introduce cleavable groups inside the

polymer (e.g. coniferyl ferulate and rosmarinic acid);

reduce interactions between polysaccharides and lignin

(e.g. caffeoyl alcohol); or give rise to lignin with reduced

chain lengths (e.g. syringaldehyde) [12��,44,46,47�]
(Figures 1b and 4).

Hydroxycinnamates esters and amides: Molecules consisting

of hydroxycinnamates conjugated to another phenolic

group via an ester or amide bond are potentially cleavable

monolignols. These types of dimers would fully incorp-

orate into lignin because of their phenolic groups on both

ends, and hence would create some internal alkali-and

acid-labile ester and amid bonds within lignin. For

example, rosmarinic acid (an ester of caffeate with 3,4-

dihydroxyphenyl lactate; Figure 3a), clovamide (an amide

of caffeate with L-dopa; Figure 3b), and coniferyl ferulate

(an ester of ferulate with coniferyl alcohol; Figure 3c)

meet these criteria to introduce labile groups into the

lignin backbone. Model studies using biomimetic sys-

tems have indeed demonstrated peroxidase-catalyzed

polymerization of rosmarinic acid and coniferyl ferulate

with conventional monolignols, resulting in enhanced cell

wall saccharification after incorporation and mild alkali

pretreatment [44,46] (Figures 1b and 4).

Monomers that decrease lignin–polysaccharide interactions:
The presence of monomers containing catechol or pyr-

ogallol groups would reduce the formation of benzyl ether

and ester cross-linking between hemicelluloses and lignin

during the b-O-4 coupling of monomers, due to internal

trapping of the quinone methide intermediate and the

formation of benzodioxane structures [48,49] (Figure 1b).
Current Opinion in Biotechnology 2014, 26:189–198
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Figure 3
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Examples of novel monolignols for lignin bioengineering. (a) Rosmarinic acid; (b) clovamide; (c) coniferyl ferulate; (d) caffeoyl alcohol (R1 = OH, R2 = H),

5-hydroxyconiferyl alcohol (R1 = OCH3, R2 = OH) and 3,4,5-trihydroxycinnamyl alcohol (R1 = R2 = OH); (e) protochatechuate (R1 = OH, R2 = H), 5-

hydroxyvanillate (R1 = OCH3, R2 = OH) and gallate (R1 = R2 = OH); (f) epigallocatechin gallate; (g) pentagalloylglucose.
For example, the b-O-4 polymerization of conventional

monolignols with benzene diols such as caffeoyl alcohol

and 5-hydroxyconiferyl alcohol (Figure 3d); or with triols

such as 3,4,5-trihydroxycinnamyl alcohol and derivatives

of gallate (Figure 3d and e respectively) should minimize

lignin–polysaccharide crosslinkages and enhance cell wall

digestibility. Lignins made of caffeoyl alcohol units have

been described in seed coats of Vanilla planifolia and of

several members of the Cactaceae family [50�,51�],
whereas 5-hydroxyconiferyl alcohol is found in lignins

of COMT-deficient plants that were shown to exhibit

increased cell wall digestibility [52,53]. Interestingly,

biomimetic studies revealed that incorporation of gallate
Current Opinion in Biotechnology 2014, 26:189–198 
derivatives such as epigallocatechin gallate and pentagal-

loylglucose (Figure 3f and g) into lignin enhances the

enzymatic digestion or fermentation of cell walls

[42,43,45]. Lastly, rosmarinic acid and clovamide,

described previously, also fall into the novel monomers

category due to their potential to form benzodioxane

structures during b-O-4 coupling with conventional

monolignols.

Monomers that reduce lignin polymerization degree: Overpro-

duction of monomers that initiate or terminate the

synthesis of lignin chains should result in a polymer

with higher number of shorter molecules. For example,
www.sciencedirect.com
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Figure 4

(a) (b)

(c) (d)
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Incorporation of NBD-tagged monolignol probe 3G into wild type

Arabidopsis stems as describe in Tobimatsu et al. 2013 [55]. Transverse

sections of a wild type Arabidopsis stem fed with NBD-tagged

monolignol probe showing exclusive polymerization of the probe in

lignifying tissues (interfascicular fibers and xylem cells). Fluorescence in

cortical cells comes from cytosolic accumulation of the fluorescent

probe. Magnifications: Panel (a): 5�; Panel (b): 10�; Panel (c): 20�;

Panels (d) and (e): 40�.
hydroxybenzoates and hydroxybenzaldehydes (C6C1

monomers) couple to conventional monolignols only

via their phenolic ring to form lignin ‘end-groups.’ Our

recent worked showed that expressing the bacterial

hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in Ara-
bidopsis allowed the overproduction of such C6C1 aro-

matics, which incorporate into the lignin and reduce its

molecular weight [12��]. Notably, cell walls from these

transgenics have improved saccharification but with no

reduction of lignin content or biomass yield compared to

wildtype plants. C6C1 aromatics containing catechol and

pyrogallol groups such as protocatechuate, 5-hydroxyva-

nillate and gallate, or their aldehyde forms (Figure 3e)

were not detected in the lignin of HCHL plants. Never-

theless, they represent important targets for lignin repla-

cement that would combine the properties of decreasing

lignin–polysaccharide interactions and reducing lignin

polymerization degree.

Monomers that increase lignin value: Based on the capacity of

monolignols to attach various compounds, such as fluor-

ophores, onto their C9 position without disturbing their

ability to polymerize with lignin monomers and polymers

[54,55] (Figures 1b and 4), a similar approach could be

developed to enrich in vivo lignin polymers with free,

readily cleavable, and valuable moieties (e.g. benzoate,

cinnamate, and tyramine). These lignin ‘decorative’ moi-

eties would be recovered from lignin after pretreatment

during biomass processing and directly used for industrial

purposes or as precursors to production of more valuable

chemicals. These decorative moieties would be selected

based on downstream application, their resistance to

polymerization by peroxidase or laccase with other mono-

lignols in vivo, and the existence of acyltransferases
www.sciencedirect.com 
capable of coupling them to hydroxycinnamoyl-CoAs.

The hydroxycinnamoyl moiety would serve as a carrier

since it would polymerize as a conventional monolignol

and incorporate the valuable chemical moieties into the

lignin polymers. Such processes are already occurring

naturally in some species, but at very low levels [1,56]

(Figure 1b). Alternatively, such monolignol engineering

could also be used to change the chemical and physical

properties of lignins and facilitate downstream utilization.

Lignin-engineering pathways

Several type III polyketide synthases have been charac-

terized for the synthesis of flavonoids, stilbenes, cou-

marins, curcuminoids, and benzalacetones in various

plant species [57], but the impact of overexpressing them

in tissues developing lignified secondary cell walls has

never been investigated. Providing that there is a suffi-

cient amount of the co-substrate malonyl-CoA, these

enzymes could be used to reroute hydroxycinnamoyl-

CoAs away from the lignin pathway. Similarly, enzymes

involved in the synthesis of lignans and neolignans could

be used to reroute coniferyl alcohol away from lignin

formation [58], and the precursors phenylalanine, cinna-

mate, and coniferyl alcohol could be converted by differ-

ent enzymes into benzenoid/phenylpropanoid volatiles at

the expense of lignin synthesis [59].

The tissue-specific overexpression of several enzymes

from the BAHD acyl-CoA transferase family [60] is of

particular interest for the production of cleavable mono-

lignol candidates. For example, several transferases that

catalyze the synthesis of hydroxycinnamate esters such as

rosmarinic acid and coniferyl ferulate/coumarate have

been identified within this family [61–63]. However,

besides hydroxycinnamoyl/benzoyl-CoA:anthranilate N-

hydroxycinnamoyl/benzoyltransferase (HCBT) from car-

nation, and hydroxycinnamoyl-CoA:hydroxyanthranilate

N-hydroxycinnamoyltransferase (HHT) from oats —

which couple hydroxcinnamoyl-CoAs to (hydroxyl)an-

thranilates [12��,64] — no BAHDs catalyzing the syn-

thesis of hydroxycinnamate amides using aromatic

acceptors have been identified. However, several N-phe-

nylpropenoyl-aromatic amino acid amides, such as (deox-

y)clovamide, are found in various plant species [65].

Instead, enzymes responsible for the synthesis of hydro-

xycinnamate amides of tyramine, other potential cleava-

ble monolignols, were found to belong to the GCN5-

related N-acyltransferase family (GNAT) [66,67]. More

generally, overexpression of monolignol acyltransferases

that use (hydroxy)benzoyl-CoA as a donor, which still

remain to be discovered, could potentially be used to

produce monomers to reduce lignin DP and enrich it with

valuable moieties that could be recovered during biomass

processing [68].

Biosynthetic enzymes for the production of C6C1 com-

pounds have been described in plants. In particular, three
Current Opinion in Biotechnology 2014, 26:189–198
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enzymes from the vanilla orchid have been implied in the

synthesis of vanillin from coumarate via the intermediates

4-hydroxybenzaldehyde and protocatechualdehyde [69–
71]. Therefore, co-expressing theses enzymes in lignify-

ing tissues could reroute coumarate towards the synthesis

of these C6C1 aromatics. Alternatively, HCHL enzymes

can be used for the conversion of hydroxycinnamoyl-

CoAs into C6C1 hydroxybenzaldehydes. Expression of

HCHL in Arabidopsis showed that C6C1 hydroxybenzal-

dehydes were efficiently converted by endogenous

enzymes to the corresponding C6C1 acids and could

undergo hydroxylation and methoxylation of their aromatic

ring [12��]. Finally, bacterial chorismate pyruvate-lyase

such as UbiC from Escherichia coli can be used for in-planta

accumulation of 4-hydroxybenzoate from chorismate

[72,73], whereas bacterial 4-hydroxybenzoate-3-hydroxy-

lases can be used for protocatechuate production [74].

Concerning the synthesis of pyrogallol groups, a study

reported a fivefold increase of gallate content in tobacco

plants that overexpress the shikimate dehydrogenase

from walnut (Juglans regia) or from E. coli [75]. We

recently reported that the bacterial coumarate 3-

hydroxylase Sam5 from Saccharothrix espanaensis was able

to hydroxylate caffeate to produce 3,4,5-trihydroxycinna-

mate when expressed in E. coli [12��]. This discovery

opens an opportunity to reroute coumarate from the lignin

pathway and to produce in planta molecules with pyr-

ogallol groups.

Conclusion
Although the lignin biosynthesis pathway and its

enzymes are well characterized, lignin reduction remains

a challenging task. This problem stems from a lack of

specificity in traditional lignin-reduction methods, which

usually compromise plant growth or impair the plant

defense system. Emerging strategies like genome bioe-

diting and transgene regulation provide new options to

achieve controlled lignin manipulations in targeted plant

tissues when applied in conjunction with tissue-type-

specific or cell-type-specific promoters. It will finally give

the opportunity to design crops with optimized lignin

composition and distribution while retaining all other

traits related to the phenylpropanoid pathway. Besides

traditional lignin reduction methods that directly target

genes from the lignin biosynthetic pathway, novel domi-

nant approaches are currently in development. This new

trend for lignin engineering focuses on the redirection of

carbon flux to the production of related phenolic com-

pounds and on the replacement of monolignols with novel

lignin monomers to improve biophysical and chemical

properties of lignins such as recalcitrance, or industrial

use. These novel technologies require experimental vali-

dation, as several have yet to be tested in plants or crops,

but they are worthy of attention because they offer both

economic potential and an intellectual challenge to the

research community.
Current Opinion in Biotechnology 2014, 26:189–198 
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