
620 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Architecture and Implementation of OpenPET
Firmware and Embedded Software

Faisal T. Abu-Nimeh, Senior Member, IEEE, Jennifer Ito, William W. Moses, Fellow, IEEE,
Qiyu Peng, and Woon-Seng Choong, Member, IEEE

Abstract—OpenPET is an open source, modular, extendible,
and high-performance platform suitable for multi-channel data
acquisition and analysis. Due to the flexibility of the hardware,
firmware, and software architectures, the platform is capable
of interfacing with a wide variety of detector modules not only
in medical imaging but also in homeland security applications.
Analog signals from radiation detectors share similar character-
istics–a pulse whose area is proportional to the deposited energy
and whose leading edge is used to extract a timing signal. As a
result, a generic design method of the platform is adopted for
the hardware, firmware, and software architectures and imple-
mentations. The analog front-end is hosted on a module called a
Detector Board, where each board can filter, combine, timestamp,
and process multiple channels independently. The processed data
is formatted and sent through a backplane bus to a module called
Support Board, where 1 Support Board can host up to eight De-
tector Board modules. The data in the Support Board, coming
from 8 Detector Board modules, can be aggregated or correlated
(if needed) depending on the algorithm implemented or runtime
mode selected. It is then sent out to a computer workstation for
further processing. The number of channels (detector modules),
to be processed, mandates the overall OpenPET System Config-
uration, which is designed to handle up to 1,024 channels using
16-channel Detector Boards in the Standard System Configura-
tion and 16,384 channels using 32-channel Detector Boards in the
Large System Configuration.

Index Terms—Electronics, instrumentation, nuclear imaging,
open source hardware, open source software.

I. INTRODUCTION

T HE OpenPET [1]–[3] platform provides a flexible and
modular data acquisition platform for a variety of appli-

cations. This flexibility allows users to interface with different
types of detectors. Nowadays, radiation detectors utilize dif-
ferent scintillators (CsI:Tl, NaI:Tl, LSO, GSO, BGO, YAP,
etc.) coupled to different photodetectors, such as photomul-
tiplier tubes (PMTs), position-sensitive PMTs, multi-anode
PMTs, PIN photodiodes, avalanche photodiodes (APDs),

Manuscript received July 20, 2015; revised September 16, 2015; accepted
November 02, 2015. Date of publication January 11, 2016; date of current ver-
sion April 15, 2016. This work was supported in part by the Director, Office of
Science, Office of Biological and Environmental Research,Medical Science Di-
vision of the U.S. Department of Energy under Contract DE-AC02-05CH11231,
and in part by the National Institutes of Health, National Institute of Biomedical
Imaging and Bioengineering under Grant R01EB016104.
The authors are with the Lawrence Berkeley National Laboratory, Berkeley,

CA 94720 USA (e-mail: ftabunimeh@lbl.gov).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNS.2015.2499600

position-sensitive APDs, hybrid photodetectors, and silicon
photomultipliers (SiPMs). Additionally, solid-state detectors
such as silicon, high-purity germanium (HPGe), and cadmium
zinc telluride (CZT) are also commonly used as radiation
detectors. The output signals from these detectors share similar
characteristics and can be combined in multiple ways depending
on the application and purpose: Simple (individual coupling
and four channel “block detectors”) to moderately complex
(Anger cameras that read out dozens of PMTs and row/column
readout) to complex (position-sensitive detectors on both ends
of a scintillator crystal array). It is also possible to have setups
that use an array of photosensors to infer the three-dimensional
location of an interaction inside a given crystal. Even though
there are different variations of radiation detectors, the analog
signals from most detectors are very similar i.e. a pulse whose
area is proportional to the deposited energy and whose leading
edge is used to extract timing.

A. System Configurations and Capacities

OpenPET offers three system configurations: a Small System
(a single Detector Unit), depicted in Fig. 1, which is capable
of capturing and processing up to 8 Detector Boards, a Stan-
dard System, shown in Fig. 2 and Fig. 3, up to 64 Detector
Boards, and Large System, displayed in Fig. 4, up to 512 De-
tector Boards.
In this paper, we will mainly focus on the Standard System,

depicted in Fig. 5, which consists of a maximum of 8 Detector
Units (DU), where a DU is a Support Board (SB) module
mounted as a backplane on a standard 12-slot 6U VME chassis.
A DU’s SB can host up to 8 Detector Boards (DBs). A DB
is designed to process multiple analog detector signals. For
example, a Standard System can support a maximum of 1024
channels using a 16-channel DB (16 analog channels per DB,
8 DBs per DU, and 8 DUs). Alternatively, it supports a max-
imum of 2048 detector signals when using a 32-channel DB.

B. Expected System Performance

The architecture is designed to be high-performance in order
to serve the new generation of radiation detection data acqui-
sition systems. Some of the important performance metrics are
a large number of channels, i.e., up to 16,384, high maximum
count rate (singles events/second), good energy reso-
lution (fwhm for test pulses), and good timing resolu-
tion (ns fwhm for conventional PET, ps fwhm for
time-of-flight PET).

0018-9499 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ABU-NIMEH et al.: ARCHITECTURE AND IMPLEMENTATION OF OPENPET FIRMWARE AND EMBEDDED SOFTWARE 621

Fig. 1. Small System Configuration (a single Detector Unit). The first 8 slots in
the chassis are populated with Detector Boards, which are connected directly to
the detector’s analog signals. The ninth slot is a Coincidence Interface Boards
which allows the system to be expanded to a Standard Configuration or a Large
Configuration.

Fig. 2. Coincidence Unit. The only difference between a Coincidence Unit and
a Detector Unit (shown in Fig. 1) is that the first eight slots in the chassis are
populated with Multiplexer Boards instead of Detector Boards and the 8th slot
is not populated with the Coincidence Interface Board.

Fig. 3. Standard System Configuration. A single Detector Unit (DU) (shown
in Fig. 1.) is connected (through a Coincidence Interface board) to a single pas-
sive, no active components, Multiplexer Board (MB-1) in a Coincidence Unit
(shown in Fig. 2). Therefore, up to 8 Detector Units can be connected in this
configuration.

Fig. 4. Large System Configuration. eight Detector Units (shown in Fig. 1.)
are connected (through Coincidence Interface boards) to a single active, FPGA
based, Multiplexer Board (MB-8) in a Coincidence Unit (shown in Fig. 2).
Therefore, up to 64 Detector Units can be connected in this configuration.

C. Data and Control Flow
Using a bottom-top approach on Fig. 5, analog signals

coming from a detector is passed through the analog front end
(AFE) on the DB. The signal is divided into two paths; one
to compute the energy and the other to compute the timing.
For example, considering the energy path on the OpenPET
16-channel Detector Board module [2], the analog signals are

Fig. 5. Simplified Standard System architecture. An analog detector signal is
passed through the analog front end (AFE) for filtering, timestamping, and digi-
tization. Then it is processed using real-time algorithms on the DB’s FPGA and
handed over to an IO FPGA for multiplexing. Finally it is given to the main
FPGA for correlation and combination. A DU packs the formatted data and
passes it to its parent chassis.

amplified and trimmed using an anti-aliasing filter with a 3 dB
cutoff frequency in the range of 6.5 MHz to 10 MHz. The
filtered signal is fed to a 12-bit pipeline analog-to-digital con-
verted (ADC) and can be sampled at a rate between 10 MSPS to
65 MSPS. For the timing path, the signal is amplified with a x10
high-bandwidth amplifier and then passed to a fast comparator
to trigger on the leading edge of the analog signal.
The digitized data and the generated pulse from the timing

comparator are fed to the FPGA for further processing. The digi-
talized data is processed using user defined real-time algorithms.
The timing pulse is fed to a time-to-digital converter (TDC) soft
core [4] to determine the arrival timestamp of the analog signal.
The data is combined (and correlated if needed), multi-

plexed, and formatted by the Support Board Detector Unit
Controller (SB-DUC), which defines the SB loaded with the
detection firmware. The data from the DB is sent out to the SB
IO FPGA for additional processing and correlation, if required.
The processed data is then passed to the SB Main FPGA. The
Main FPGA on the SB-DUC combines and multiplexes the
data out. For a Small System, the data is passed to a Computer
Workstation for offline processing, using USB or Ethernet. For
a Standard System further multiplexing and processing occurs
where the formatted data is passed to a Coincidence Interface
Board (CI) that is plugged into the SB. This CI board simply
passes the data, through a shielded, cable to a Multiplexer
Board (MB) that is plugged into a Coincidence Unit (CU). A
CU is essentially a DU with MBs plugged into the slots where
DBs reside as shown in Fig. 2. The MB passes the formatted
data from the CI board to the Support Board Coincidence Unit
Controller (SB-CUC), which defines the SB loaded with the
coincidence firmware. The SB-CUCwill do the final processing
(e.g., finding the coincidence event, formatting the coincidence

622 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

word, etc.) of the data coming from all the DUs and then send
final data (via USB or Ethernet) to a workstation for storage or
offline processing.
The command and control flow is similar to the data flow;

however, the commands are initiated from top-to-bottom, sim-
ilar to a tree topology. On startup, each node in the tree discovers
its parent and children, and all addresses are configured accord-
ingly. A user (or a script) initiates a command from the worksta-
tion. This command will be translated and encoded to the cor-
responding child, i.e., SB-CUC. Consecutively, each node will
pass the command to its corresponding child(ren) by looking at
the destination address. Finally, once the command reaches its
desired destination(s) the corresponding node(s) execute(s) the
command and send(s) a reply, if required.

II. ARCHITECTURE AND IMPLEMENTATION

A. Clock Distribution
In OpenPET there are two main clocks: CLK and Slice. The

former represents the main clock source and it is sourced from
an 80 MHz local oscillator or fed from an external SMA con-
nector with a frequency range of 5–400 MHz. On the other
hand, Slice, also known as frame clock, is a slower frequency
clock and behaves similar to ADC frame clocks, i.e., it wraps
X number of clock ticks to represent a “Word”. When the main
CLK is 80 MHz the Slice is typically 1/8th or 1/16th of that
frequency, which translates to 10 MHz or 5 MHz respectively.
Additionally, it is important to mention that sometimes it might
be desirable to create a “valid” signal instead of a periodic Slice
(frame) clock; therefore, the Slice signal is thought of as a dual
purpose clock/signal depending on the mode of operation in
the firmware. For example, in Scope mode, discussed in Sec-
tion E1), the firmware does not require a periodic Slice clock.
As a result, a “valid” is used there.
The uppermost node is responsible for generating the CLK.

OpenPET provides two methods: (a) a Local Oscillator (LO)
running at 80 MHz or (b) an External clock (Ext) fed through
a dedicated SMA connector. Fig. 6 shows a simplified clock
topology of the entire system. All clocks are distributed using
LVDS and are fed to clock capable pins on the FPGAs. Each
FPGA in the system utilizes an internal Phase-Locked-Loop
(PLL) in order to keep all components of its system synchro-
nized. The lowermost unit (Detector Unit) in a Large or Stan-
dard System Configuration receives CLK and Slice through the
Coincidence Interface Board and passes them separately to two
dedicated very low jitter and skew clock distribution ICs (TI
CDCLVD110) as shown in Fig. 6. For CLK, the clock distri-
bution IC generates ten replicas: one goes to the Main FPGA
on the Support Board, one goes to the two IO FPGAs on the
Support Board (the second IO FPGA is not shown in figure for
simplicity), and eight go to the first 8 slots in the chassis tar-
geting DBs or MBs. Note that the clocks in Fig. 6 are connected
on Detector Boards, but the concept is the same for Multiplexer
Boards.
The internal PLLs do not only synchronize the timing across

multiple system components but also serve as a standard de-
sign block shared across multiple boards and FPGAs. This stan-
dardization helps simplify the overall firmware architecture by

Fig. 6. Clock topology of OpenPET. The clock source in the entire platform
depends on the system configuration. For a Large and Standard System Con-
figurations the main clock source is a local oscillator (LO) or an external clock
source (Ext) on the Support Board in the upper most node. This clock propagates
down through the Coincidence Interface Board (CB CLK) to a dedicated clock
distributed IC (Integrated Circuit) chip. Then it is fed to the PLLs in the Main
FPGA and IO FPGAs on the Support Board as well as the PLL in the Detector
Board or Multiplexer Board FPGA. Clocks which have a direction from top to
bottom are generated by the uppermost node and used in all children. Clocks
which have a direction from bottom to top are PLL clocks synchronized with
the parent node and their purpose is to clock the data from the lowermost node
to the uppermost parent. The dotted unlabeled clock is a low speed serial clock
for commands and control.

reusing the same blocks of code across different nodes. For ex-
ample, the reset logic in the entire platform depends on the PLL
locking to CLK. Therefore, the reset code is reused across all
nodes.
The PLL core in the uppermost parent generates 4 clocks:

(i) Main system clock (typically running at 80 MHz) is used
to feed the clock distribution IC in order to clock all compo-
nents in the system. It also clocks all FPGA modules i.e., Al-
tera’s Qsys module which contains the NIOS soft core micro-
processor, QuickUSB logic, and the generic Software-Firmware
Interface module. (ii) Data path clock (typically running at half
the frequency of the main system clock) is used to transfer the
clock domain of the incoming children data/clock to the system
clock domain. (iii) Frame or slice clock is a slow clock which
feeds another clock distribution IC in order to align all compo-
nents in the system. The rising edge of this clock is used to create
a synchronized startup pulse in the entire system. However, the
main use of this clock is to wrap or frame the data in all children
in fixed time intervals, i.e., simplify pipelining the data as well
as define event boundaries for coincidence computations. (iv)
QuickUSB clock (typically running at 30 MHz but can be be-
tween 5–48 MHz) is used to clock data out of OpenPET chassis
to a workstation. It is also used to clock in user commands from
the workstation to the OpenPET system.
Moreover, in all other nodes (e.g., DBs) in the system the

PLL core generates 2 clocks: (i) Main system clock (typically
running at 80 MHz) is a clock signal derived from the clock
distribution IC found in the node’s parent. Its main purpose is to

ABU-NIMEH et al.: ARCHITECTURE AND IMPLEMENTATION OF OPENPET FIRMWARE AND EMBEDDED SOFTWARE 623

Fig. 7. Backplane I/O communication bus. A single child is shown in the figure
for simplicity. The Support Board can host up to eight children. From right
to left: the main clocks incoming from parent (LVDS), SPI interface (Single-
Ended), Altera Passive Serial FPGA configuration (Single-Ended), outgoing
data and clocks (LVDS), and bi-directional signals (LVDS).

clock all FPGA modules, i.e., Altera’s Qsys module which con-
tains the NIOS soft core microprocessor. It is also used to clock
the generic Software-Firmware Interface module. (ii)Data path
clock is used to clock all external components (e.g. ADCs and
DACs) as well as transfer the acquired data from ADCs clock
domain to the child’s output stage clock domain.

B. FPGAs and Other Peripherals
To simplify the hardware and firmware development, all

FPGAs in the OpenPET platform share the same part number
Altera Cyclone III EP3C40F780C7. This facilitates easier
Printed-Circuit-Board (PCB) design and fabrication as well
as lowers the overall cost of the platform by reusing the same
parts. Additionally, it helps firmware engineers to reuse blocks
of code across different OpenPET components.
In order to seamlessly program and update the firmware in

a given OpenPET node, the Main FPGA in the Support Board
is connected to a 64Mb Flash memory device for Active Serial
Configuration called “EPCS64.” OpenPET stores all firmwares
(total of three) as well as the embedded software (for NIOS) in
a single EPCS device on the Support Board.
On power up, the Main FPGA loads its compressed firmware

as well as its embedded software from the EPCS. After that the
compressed firmware and embedded software images of the two
IO FPGAs on the Support Board are loaded. Once the IO FPGAs
are programmed and running, the embedded software in the
Main FPGA, by default, programs all children (e.g., DBs) using
the Passive Serial Configuration Interface, shown as “FPGA
Config” in Fig. 7, with an uncompressed firmware/embedded
software image that is also stored in the EPCS. This default be-
havior helps to bring up a working system in the shortest amount
of timewith the least amount of effort. Note that if we use a com-
pressed image for children nodes (e.g. DBs), the bitstream size
will be unknown (i.e. variable), which requires the end-user to
modify and rebuild the firmware and embedded software of the
SB whenever a change occurs on the Detector Board firmware
or software. Therefore, we sacrifice the extra space used by an
uncompressed image for the sake of flexibility and user friend-
liness.
Finally, other peripherals like LEDs, SRAM, temperature

sensors, and Logic Analyzer debugging headers are available
in all components of the system for debugging purposes, user

friendliness, and flexibility. For example, SRAM memory pro-
vides a useful storage for different uses like DAC thresholds,
calibration coefficients, lookup tables, etc.

C. Overview of I/O Communications
1) Host Workstation PC to OpenPET Interface: Currently,

there are two methods to communicate with an OpenPET
system: (a) using BitWise QuickUSB module [5] or (b) using
Gigabit Ethernet 1000BASE-T (copper) or 1000BASE-X
(fiber). Both options allow for full-duplex communication
between a workstation and OpenPET.
QuickUSB uses USB v2.0 which supports up to 480Mbps

transfer rates. QuickUSB provides two clocking schemes: in-
ternal and external. OpenPET uses the latter which means that
QuickUSB does not internally generate a clock, but it accepts an
external clock generated from the Main FPGA on the Support
Board. This scheme mandates that all commands and data from
OpenPET to QuickUSB (or vice versa) are synchronized to the
main clock source described in subsection A above. In return, it
simplifies firmware development and timing constraints as well
as provides better data integrity by using a PLL output clock to
sample the data.
Gigabit Ethernet requires an additional module in the

OpenPET platform called Host PC Interface Board. This board
is plugged into the tenth slot in the chassis, as shown in Fig. 1,
and uses a dedicated PHY chip for the gigabit transceiver.
The maximum theoretical transfer rate of Gigabit Ethernet is
1250Mbps; however, this rate depends on the way the Eth-
ernet subsystem is implemented in firmware. For example,
for a simple software implementation (e.g. using a NIOS
microprocessor, Direct Memory Access (DMA), and a soft
User Datagram Protocol (UDP) stack), this metric is reduced
by approximately 20% - 40%. On the other hand, using a
custom firmware with NIOS, hardware offloading, and modular
Scatter-Gather Direct Memory Access (SGDMA), the transfer
rate can achieve 90% to 99% of its maximum capacity [6].
2) Inter OpenPET Interfaces: OpenPET modules and com-

ponents have two separate links for data path and control path.
This is depicted in Fig. 7.
The data path uses sixteen LVDS pairs (shown as Data sub-

block in Fig. 7) to transfer large amounts of data, e.g. ADC
samples from one child to its parent. The data is clocked out
using “Clock Out” pins in the same sub-block in the figure. This
clock is generated using an internal PLL whose input clock is
“Clock In” (shown as Clocks sub-block in Fig. 7). An additional
LVDS bus (eight pairs) is also available for applications that
require more than sixteen IO data lines.
The control path, on the other hand, uses four single-ended

lines, which are currently used to implement a standard Serial
Peripheral Interface (SPI). The Control sub-block in Fig. 7
shows the four signals: “Clock” which is a slow frequency
serial clock, “MOSI” is a master output slave input port,
“MISO” is a master input slave output port, and “CS” is chip
select. It is worth mentioning that these 4 signals can be used
to implement other serial protocols instead of SPI. However,
a custom firmware and embedded software interface must be
implemented in all nodes replacing the current SPI implemen-
tation described in the sections below.

624 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Fig. 8. Command or Reply packet in OpenPET where the command length is
defined to be 80-bits. CMD ID: 1-bit c/r flag command identifier.
SRC Addr: is a 16-bit address field stating the packet has originated from. DST
Addr: 16-bit address field stating the packet’s target. Payload: 32-bit value that
contains arbitrary data related to the command or the reply.

D. Command and Control Flow

All commands are initiated by the user on a workstation. A
script or a Graphical User Interface (GUI) program is used to
transfer the commands from the workstation to the OpenPET
chassis via a QuickUSB module or an Ethernet port on the PC
Interface Board. Ethernet packets are passed directly to the
NIOS for further processing, however, when using QuickUSB
an intermediate firmware module relays the commands from
the workstation via FPGA fabric to the NIOS microprocessor
using a First-In-First-Out (FIFO) memory module.
After a command is received by the parent node, it is pro-

cessed by its NIOS microprocessor and a reply (response) is
constructed and sent back to the original sender.
All command and reply packets are designed to have the same

length. The current command length in the OpenPET platform is
80-bits (i.e., 10 bytes) as shown in Fig. 8. However, this length
is generic by design; in other words, a user can easily change
the default length of the OpenPET command by changing a
single variable called “CMD_PKTS” in the firmware and soft-
ware. This feature gives the user greater flexibility in their im-
plementation, and it provides a paved roadmap for future ex-
tensions of the OpenPET platform. Note that due to a restric-
tion imposed by the QuickUSB module and SPI bus widths, the
commands/replies have to be a multiple of 16-bits e.g. 80, 96,
112, 128 bit, etc.
The command identifier (CMD ID in Fig. 8) is a 16-bit value

where the most significant bit (MSB) (named in this context as
c/r flag) is used as a multi-purpose flag: (a) when the uppermost
parent sends down a command with this flag set to 0 (default be-
havior), the destined child is expected to execute the command
(identified by the remaining 15-bits) and send a reply within
a pre-defined timeout period (typically 200 ms). If the reply is
received the parent will be satisfied; however, if no reply is re-
ceived, the parent will attempt to send the same command
number of times before coming to a conclusion, i.e., busy child,
dead child, out of memory, etc. The number of retries is a
constant defined in the client’s software and NIOS embedded
software in all nodes. (b) When the child responds back to a
command after a successful execution, it sets the c/r flag to ‘1’
(default behavior). (c) When the uppermost parent sends down
a command with this flag set to ‘1,’ this command is considered
asynchronous, or, non-blocking. A non-blocking command be-
comes useful when a child or a grandchild requires a lot of time
(more than the permitted timeout period and retries) to complete
a task. For example, a child is waiting for a user to press a button,
or a DAC is sending a train of pulses to a detector board for a
long period of time. The first child that receives a non-blocking
command replies immediately to the parent acknowledging that

Fig. 9. 16-bit Address field: FromMSB, Boardcast flag, HostPC flag, not used,
Multiplexer Board Controller flag, Coincidence and Detector Unit Controller
flag, Coincidence Unit Controller flag, Detector Unit Controller flag, 3-bit Mul-
tiplexer Board address, 3-bit Detector Unit address, and 3-bit Detector Board
address.

it has received the command. Then it either executes the com-
mand or passes it down to its destination.
The address field (SRCAddr or DSTAddr in Fig. 8) are 16-bit

fields where each bit or ranges of bits are defined as shown
in Fig. 9. The Broadcast flag bit is used only when sending a
command and it causes the first receiving child to broadcast the
command to all grandchildren. MBC, CDUC, CUC, and DUC
flags are 1-bit flags used when sending a command to a specific
chassis controller. The HostPC flag indicates that the source or
the destination is the workstation.

E. Data Flow

In order to support different DBs with a different number
of channels, there is a need to create a generic source syn-
chronous ADC interface. OpenPET utilizes Altera’s Cyclone
III FPGA which does not come with a dedicated SERDES
(serializer/deserializer) circuit; therefore, the generic interface
has to be implemented in FPGA fabric without relying on any
dedicated or integrated high-speed interfaces. This introduces
a challenge because the number of resources (PLLs, Lookup
tables, etc) are limited and shared with other modules in the
DB. As a result, a parameterized compact design is imple-
mented to allow OpenPET to interface a wide range of pipeline
ADC with maximum sampling frequencies of approximately

MHz MHz. The design utilizes a standard Altera
core called “DDIO” which supports double data rate I/O in
order to clock the incoming ADC data at both rising and falling
edges without using any additional PLL cores.
1) Scope Mode (Raw Data): Oscilloscope or Scope mode is

a system data mode where ADC samples are transferred as-is
from the DBs all the way to the workstation. The user must
correctly configure the settings of this mode to get meaningful
data. To use this mode, the user has to send the command
ID “SET_SYS_DATA_MODE” with a payload of , fol-
lowed by the command ID “SET_SYS_DATA_MODE_SET-
TINGS” with the proper payload as shown in Fig. 8.
Finally the user can run it by sending the command ID
“SET_SYS_DATA_MODE_ACTION” with a payload of .
Once the correct configuration is in place data transfers are ac-
tivated by a trigger, e.g. an incoming analog signal whose pulse
height is larger than a predefined DAC threshold. When the ac-
quisition starts, 32-bit packets from different channels, detector
boards, or detector units are simply transferred sequentially
using a round-robin scheduling algorithm. All complex sorting
operations are deferred to a later stage, i.e., the workstation,
in order to keep the firmware architecture simple, small, and
predictable.

ABU-NIMEH et al.: ARCHITECTURE AND IMPLEMENTATION OF OPENPET FIRMWARE AND EMBEDDED SOFTWARE 625

Fig. 10. Data path headers and samples for ScopeMode. Detector Board header
starting at LSB: (5:0) Number of channel header packets, (9:6) not used, (12:10)
Detector Board Address, (15:13) DUC Address, (18:16) MB Address, (23:19)
Data Format, (27:24) not used, (31:28) Packet ID (must equal to). Channel
Header starting from LSB: (19:0) TDC data (if used), (20) hardware trigger hit
(energy), (21) firmware trigger hit, (27:22) channel address, (31:28) Packet ID
(must equal to). ADC data sample starting from LSB: (27:0) e.g. raw ADC
data from (11:0), (31:28) Packet ID (must equal to).

As described above, Scope mode settings allow the user to
set run-time configurations. These settings are shown in Fig. 10
and briefly described hereafter. The 32-bit payload contains four
main parameters: (i) a 4-bit Data Format sets the output format
of the Scope mode. (ii) A 9-bit Number of Samples specifies the
number of samples to stream. (iii) A 4-bit Number of Samples
Before trigger specifies how many samples the firmware has
to buffer before a trigger occurs. (iv) A 4-bit Trigger Window
specifies the number of samples to monitor on all channels after
a trigger occurs on one channel. If any other channel triggers
during this time, its header will also have the ‘triggered’ bit flag
set to ‘1’.
The data transferred from all detector boards is fairly trans-

mitted through the use of the round-robin scheduling algorithm
at the SB stage. Hence, a 32-bit channel header and a 32-bit de-
tector board header, depicted in Fig. 10, are inserted in the data
path stream. It is also crucial to assign a 4-bit packet ID to differ-
entiate channel headers, detector headers, and ADC data sam-
ples packets; thus, the fourmost significant bits of the 32-bit data
packets are dedicated to that purpose. For example, bits (31:28)
for a channel header must have a value of , a detector board
header must have a value of , and the value for an ADC
data sample must be .
2) Other Modes (e.g. Singles, Coincidence): Singles mode is

a system data mode where ADC samples are processed on the
Detector Board to create a Singles Event Word (SEW), which is
a digital representation of a single gamma ray interaction. These
SEWs are passed to the SB-DUC whose main function is to
multiplex the SEWs from multiple Detector Boards. The mul-
tiplexed SEWs are then passed to the SB-CUC. The SB-CUC
searches through the SEWs for pairs that are in time coincidence
and form a Coincidence Event Words (CEWs). These CEWs
are then passed to the workstation. Optionally, the SB-CUC
can act as a multiplexer and just pass unaltered SEWs to the
workstation.
The system divides time into small, fixed length time slices

depending on the CLK and Slice ratio (e.g.100–200 ns or 8–16

clocks when CLK is 80 MHz and Slice is 10 or 5 MHz.) All
individual operations must occur within a single Slice period,
which implies that only single event words that occur in the
same Slice period can be combined to form a coincident event.
Since it can take a significantly longer time than a single Slice
period to process one event, the system is designed to pipeline
operations so that the processing is divided into smaller steps
that each can be completed in a single Slice period. The SEWs
are output using the 16-bit wide data bus as shown in Fig. 7.
By grouping these 16 lines into 4 sets of 4 lines each, the SEWs
can be 64-bit or 128-bit long with 8 clocks (100 ns) or 16 clocks
(200 ns) of the system CLK respectively. During one Slice pe-
riod, boards that output SEWs (e.g., the DBs and CI boards)
can pass up to 4 SEWs. Thus, the maximum singles rate that
can be transferred to the SB-DUC is 32 SEWs (four for each of
the eight DBs) per Slice period. The SB-DUC can multiplex a
maximum of 4 SEWs to the SB-CUC. Similarly, SB-CUC can
receive a maximum of 4 SEWs from each of the 8 DUs in the
Standard System to form the CEWs in the SB-CUC. In practice,
the maximum event rate is limited by the transfer rate between
the SB-CUC and the workstation, which is considerably slower,
i.e., a maximum throughput of 480 Mbps for QuickUSB and
1 Gbps for gigabit Ethernet.

III. EMBEDDED SOFTWARE

Embedded software uses plain C, and runs on Altera’s em-
bedded soft core NIOS microprocessor. The subsections below
describe the major building blocks of the embedded software.

A. NIOS
All FPGAs in the OpenPET system contain a NIOS pro-

cessor. On the Main FPGA in the SB, the NIOS processor
has extra features enabled like caching, larger memory space,
CPU debugging, etc. On the other hand, the NIOS processors
running in the IO FPGAs in the SB and DB utilize a minimal
NIOS core to keep the implementation size minimal.
Having NIOS in all FPGAs simplifies the design and devel-

opment of the firmware as well as the embedded software. For
example, in the firmware development, the Software-Firmware
Interface module is reused in the Main and IO FPGAs in the
SB and in the DB FPGA. Additionally, in the embedded soft-
ware the SPI interface is reused in all FPGAs as well. In addi-
tion to the two benefits mentioned above, this method simplifies
the testing and enhances the stability of the developed reusable
block.
Finally, having NIOS in all FPGAs requires bundling the em-

bedded software along with the firmware in order to create a
single bitstream image. However, this requires the use of the
scarce on-chip FPGA memory when DDR memory is not avail-
able, i.e., IO FPGAs and DB FPGAs. As a result, this restricts
the embedded software size to be very small (e.g. less than
10 KB) so that the embedded software will fit in an on-chip
memory without taking many resources from the rest of the
FPGA fabric.

B. SPI Interface for Commands and Control
In order to keep a standard design throughout the platform,

OpenPET uses Altera’s standard 32-bit SPI core to generate the

626 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Fig. 11. SPI software processing flow. Once a command is received, via
QuickUSB or Ethernet, it goes through this flow in order to generate a proper
reply to the source.

firmware interface and Altera’s standard SPI hardware abstrac-
tion layer (HAL) and application program interface (API) li-
brary for the embedded software.
Since the length of an OpenPET command is variable as de-

scribed in Section II-D the SPI interface has to be flexible to
allow us to accommodate any expansion or future improve-
ments. As a result, a modular SPI software interface is imple-
mented to convert QuickUSB and Ethernet commands to 32-bit
SPI transactions.
For any given command, it is important to transfer the com-

mand ID as well as the payload to the destined child; therefore,
the parent of the destined child will be responsible for managing
the source and destination addresses of the OpenPET command.
For example, in the default 80-bit command implementation of
OpenPET, two 32-bit SPI transactions will occur: The first trans-
action will contain the 16-bit command as well as 16-bit source
address. The second transaction will contain the 32-bit payload.
Note, that the parent dropped the source address from the com-
mand because it is not needed by the child but it will include it
back when it replies.
SPI does not allow slaves (i.e., children) to initiate a trans-

action by design. Consequently, the master (i.e., parent) has to
perform a read SPI transaction by writing 0’s to a destined slave.
The flow of SPI commands is shown in Fig. 11 where blocks
labeled “spi write” and “spi read” represent C functions in the
embedded software. These functions are depicted in Fig. 13 and
Fig. 12 respectively.
SPI slaves differentiate between a write SPI transaction and

a read transaction by looking at the SPI data. If it is all zeros, it
is considered a SPI read. To implement this in an efficient way,
OpenPET utilizes NIOS interrupts, such that any SPI transaction
on a slave will cause the NIOS microprocessor on that slave

Fig. 12. OpenPET SPI read() C function. The returned value of this function is
passed through to the source. CMD_ are predefine constants in the embedded
software. The constants names used in this figure are descriptive.

to wake up and execute an Interrupt Service Routine (ISR). If
an SPI transaction does not finish within a specified timeout
period, it will be dropped and ignored. Also, if a slave is flooded
with SPI reads or writes before it finishes, the slave will always
provide the last valid reply saved on its output port; thus, alerting
the master that it is busy.

C. Generic Embedded Software and Firmware Interface

Once an SPI command reaches a node, if this command is
to be executed within the node’s firmware, then it has to be di-
rected to a specific firmware module for proper execution. Ac-
cordingly, Altera’s Parallel IO (PIO) soft cores are used to create
a generic interface between the NIOS software and the FPGA
fabric. Each command received will be sent to the firmware on
a 16-bit wide bus along with a 1-bit valid signal. The firmware
registers incoming commands on the rising edge of the valid
signal and returns a reply to NIOS on another 16-bit bus in order
to allow duplex operations. An additional 1-bit valid signal is
used to notify the NIOS that a reply is ready. This valid bit is
used as an interrupt to trigger an ISR function which handles
Software-Firmware Interface commands. Once a valid reply is
acquired in software, it will be saved in the SPI output port
buffer. Therefore, the next time the SPI master (i.e. parent) per-
forms a read operation, the reply will be readily available.

ABU-NIMEH et al.: ARCHITECTURE AND IMPLEMENTATION OF OPENPET FIRMWARE AND EMBEDDED SOFTWARE 627

Fig. 13. OpenPET SPI write() C function. A non-zero return value is consid-
ered an error.

IV. WORKSTATION COMPUTER SOFTWARE

The OpenPET platform provides multiple software packages.
A detailed description of these packages is beyond the scope of
this manuscript; thus, we provide a short summary of what is
available. First, two command line executables are available to
issue command and acquire data. An OpenPET system can be
configured and run with just these two executables. Second, a
data acquisition and analysis software for running an OpenPET
system called OpenPET Control and Analysis Tools (CAT) has
been implemented using the ROOT framework [7]. OpenPET
CAT can be executed using a graphical user interface (GUI) or
command line scripts. Third, a Python script, has been imple-
mented to serve as an automated test script for new firmware
and software builds, and to validate the configuration of the
OpenPET system.

V. OPEN SOURCE MANAGEMENT

An open source software, firmware, and hardware project re-
quires a lot of resources to manage and track its development
and growth. The amount of time and effort required to pro-
vide the following components and services is not negligible
or trivial, and they are considered as the foundation that the
OpenPET platform floats on and sails with:

A. Website
The OpenPET website is hosted internally at Lawrence

Berkeley National Laboratory servers. The website is served
off of a Virtual Machine to allow easier migration, recovery,

and maintenance. The content management system used is
Wordpress, which allows us to quickly update, publish, and
maintain the website for the OpenPET community.
Communication among users and developers is crucial for

any open source project; therefore, we provide multiple forums
(hosted on our website) for discussions and support. Addition-
ally, a mailing list is used to distribute emails across users and
developers quickly.

B. Repository
OpenPET uses BitBucket [8], a distributed revision control

system site for Git and Mercurial in the cloud. Each component
of the OpenPET platform is revision controlled and tracked.
For software development like C++ and Python, using revision
control is standard and simple. However, for hardware compo-
nents like PCB design files and firmware development, using
revision control is not trivial. As a result, multiple reposito-
ries are created for each hardware component. For example, the
Support Board has its own repositories with multiple subdirec-
tories, where each subdirectories contains (i) hardware design
files like Cadence Orcad or Allegro. (ii) Firmware design files
like Altera’s Quratus II project, HDL components, and Qsys
project. (iii) Software files like Eclipse project, C embedded
software running on NIOS, Board Support Package (BSP) gen-
eration scripts, etc. (iv) Scripts which are cross-platform (Win-
dows batch scripts and GNU/Linux shell scripts) files that facil-
itate many complex, iterative, and time consuming functions:
(a) generation of an integrated bitstream image for the Support
Board, that is, compile and build 3 different Quartus projects for
3 FPGAs, 3 Qsys projects, 3 Eclipse project, merge the firmware
(SRAM Object File -- SOF) with its corresponding embedded
software (Executable and Linkable Format -- ELF) and com-
bine all 3 imaged into a single “flashable” image to be stored
on EPCS; (b) generation of an integrated image to the Detector
Board. The process is similar to Support Board but doesn’t re-
quire 3 FPGAs; (c) simplified flashing and programming, where
a user executes simple scripts to program the entire system;
and (d) automated build and test flows where the software and
firmware repositories of the entire system can be periodically
tested on actual hardware.
The hardware design files and the source code for the

firmware, software, and scripts can be found in our public
repository [8].

VI. RESULTS
OpenPET platform results are presented as overall system

performance as well as functional verifiability.

A. System Performance
A full configuration of the entire system followed by raw data

acquisition using the Scopemode serves as an excellent measure
of performance. The system is configured with the data bus is
running at 80MHz, i.e., default OpenPET system frequency, the
data mode is set to Scopemode, all channel trigger masks are en-
abled, and a lowDAC threshold for triggers is set. These settings
will saturate the data path all the way to the uppermost node
where the QuickUSB module is connected. A dual clock FIFO
manages the output data stream between the OpenPET chassis,

628 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 2, APRIL 2016

Fig. 14. Experimental setup for a PET block Detector and OpenPET platform.

the QuickUSB module, and the workstation. The incoming data
rate of that FIFO is 1280 Mbps (i.e. 80 MHz 16-bits), and the
outgoing rate is 480 Mbps.
After running the Scope mode for few minutes, we have mea-

sured the throughput at the workstation to be around 320 Mbps.
This is less than 480 Mbps because USB 2.0 never reaches its
maximum theoretical speed due to software and CPU/memory
limitations on the workstation.

B. Functionality
The same test setup used to acquire System Performance re-

sults is also used to verify the functionality of the platform.
However, the main difference is that the ADC is configured to
output fixed-pattern data samples which are eventually trans-
ferred to the uppermost node, the QuickUSB module, and then
to the workstation computer storage. The recorded data is vali-
dated for integrity by verifying that the data on disk equals the
predefined fixed-pattern data generated by the ADC.
We validated data integrity and platform functionality by col-

lecting and storing 2 GB of fixed-pattern ADC on disk, and veri-
fying that the stored data and headers were equal to the expected
values.

C. Experiment
A prototype PET block detector, which consists of a

array of mm LSO crystals read out with four Hama-
matsu R-9800 PhotoMultiplier Tubes (PMT), was setup as pho-
tographed in Fig. 14. Each PMT output was sent to an input
channel of the OpenPET 16-channel Detector Board [2]. The
total amount of energy observed by each of the four PMTs (A,
B, C, and D) was determined by integrating the analog signals.
These four energies were then summed to estimate the total en-
ergy () of the event. The appropriate Anger
logic (and) was computed
to give an estimate of the position of interaction for the event.
Fig. 15 shows the acquired digitized data stored on disk using
OpenCAT GUI and Fig. 16 shows the flood map for events with
energy greater than 350 keV. The average energy resolutions
from all the 144 crystals were found to be around 12% fwhm.
Further experiments are performed in [2] which exceed

the expected performance metrics stated in Section I-B. We

Fig. 15. OpenCAT GUI software showing the acquired digitized signals from
the conventional PET block detector module.

Fig. 16. Flood map for the data collected from the experiment.

reported a 0.3% energy resolution (compared with) of
an HPGe detector when excited with 662 keV gamma rays
and 90 ps fwhm timing resolution (compared with ps)
by splitting a test pulse to two channels and measuring the
difference.

VII. CONCLUSION
The OpenPET platform provides a solid open source hard-

ware, firmware, and software packages for multi-channel data
acquisition and analysis. The flexibility and modularity of the
hardware, firmware, and software makes it very appealing to
a wide range of applications, i.e., nuclear imaging, detection,
and non-proliferation applications. We have described the ar-
chitecture and implementation of the firmware as well as the
embedded software and provided experimental results to show
the suppleness and performance of the platform.

REFERENCES
[1] W. W. Moses, S. Buckley, C. Vu, Q. Peng, N. Pavlov, W.-S. Choong,

J. Wu, and C. Jackson, “OpenPET: A flexible electronics system
for radiotracer imaging,” IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp.
2532–2537, Oct. 2010.

[2] W.-S. Choong, F. Abu-Nimeh, W. W. Moses, Q. Peng, C. Q. Vu, and
J.-Y. Wu, “A front-end readout detector board for the OpenPET elec-
tronics system,” J. Instrum., vol. 10, no. 8, pp. T08002–T08002, Aug.
2015.

ABU-NIMEH et al.: ARCHITECTURE AND IMPLEMENTATION OF OPENPET FIRMWARE AND EMBEDDED SOFTWARE 629

[3] OpenPET official website [Online]. Available: https://openpet.lbl.gov/,
[Accessed: 08-Jul-2015]

[4] J. Wu and Z. Shi, “The 10-ps wave union TDC: Improving FPGA TDC
resolution beyond its cell delay,” in Proc. IEEE Nuclear Science Symp.
Conf. Rec., 2008, pp. 3440–3446.

[5] “QuickUSB module,” [Online]. Available: http://www.bitwisesys.
com/qusb2-p/qusb2.htm [Accessed: 20-Jul-2015]

[6] “Nios II UDP offload example - altera wiki,” [Online]. Available:
http://www.alterawiki.com/wiki/Nios_II_UDP_Offload_Example
[Accessed: 20-Jul-2015]

[7] “ROOT | A data analysis framework,” [Online]. Available: https://root.
cern.ch/drupal/ [Accessed: 20-Jul-2015]

[8] “OpenPET–bitbucket,” OpenPET Repository [Online]. Available:
https://bitbucket.org/openpet/ [Accessed: 06-Jul-2015]

