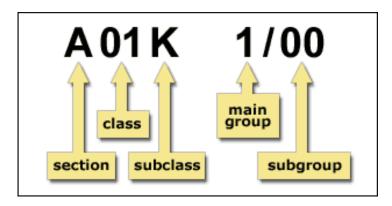
Lab Bridge IP Bundling Project

Eric Payne
November 16, 2017
Presentation to TTWG

Project Statement of Work

Participants: ANL, BNL, LBNL, ORNL, NREL and SLAC


- Task 1: Multi-Lab IP portfolio generation (NREL)
- Task 2: Development of common agreements (SLAC)
- Task 3: Selection of tech packages (ORNL)
- Task 4: Outreach to industry (ANL)

Task Name	Q4		Q1		Q2		Q3		Q4						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
IP portfolio generation			NREL												
Common Agreements													SLAC		
Selection of technology packages							ORNL								
Industry Outreach											ANL				
Outreach Metrics and evaluation											BNL				
Montioring and Evaluation													LBNL		
Reporting													ALL		

Task 1: Develop a multi-lab IP portfolio

- ☐ Create an inventory of U.S. patent records
 - □ >3,100 distinct U.S. patent applications & patents
- Normalize patent records to look for similar assets
 - ☐ Develop a syntax array of patent classification codes
 - Multi-parametric analysis: keywords and IPC codes
 - ☐ Soft cosine similarity to assess overlap between vectors

	С	23	С	14	82
12/459,623	<u>C</u>	23	С	18	56
12/459,025	<u>C</u>	23	С	14	61
	<u>C</u>	<u>23</u>	В	9	256
	C	12	F	5	411
13/251,123	С	23	С	18	45
13/231,123	Н	6	D	31	152
	Н	5	D	23	5

	Unite Toyomu	d States Patent	(10) Patent No.: US 6,657,118 B2 (45) Date of Patent: Dec. 2, 2003				
(54)	MANUFA	SATTERY MODULE, METHOD OF CTURING SAME AND POWER TING APPARATUS	JP 11-251614 9/1999 JP 2000-77700 A * 3/2000 JP 2001-156315 A * 6/2001				
(75)	Inventors:	Fumitaka Toyomura, Nara (JP); Nobuyoshi Takehara, Kyoto (JP)	OTHER PUBLICATIONS Kurokawa et al, "Conceptual considerations on PV system				
(73)	Assignce:	Canon Kabushiki Kaisha, Tokyo (JP)	composed of AC modules," Solar Energy Materials and Solar Cells, vol. 47, (1997), pp. 243–250.*				
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.			"Solar Power Generation System Application Technology Development", 1996 Consigned Operation Result Report New Energy and Industrial Technology Development Organization (NEDO), Japan Electrical Manufacturers' Associations, 1997 (1997).				
(21)	Appl. No.	: 09/957,945	tion, Mar. 1997, pp. 104–105. "Solar Power Generation System Application Technology				
(22) (65)	Filed:	Sep. 24, 2001 Prior Publication Data	Development", 1997 Consigned Operation Result Report of New Energy and Industrial Technology Development Organization (NEDO), Central Research Institute of Electric				
(00)	US 2002/00	338666 Al Apr. 4, 2002	Power Industry, Mar. 1998, pp. 148–149.				
(30)	Fore	ign Application Priority Data	* cited by examiner				
(51)	Int. Cl.7	(JP) 2000-300164 H01L 21/33; H01L 31/048 136/244; 136/251; 136/291	(74) Attorney, Agent, or Firm—Fitzpatrick, Cella, Harper & Scinto				
(32)		/293; 136/258; 363/60; 323/906; 323/221	(57) ABSTRACT				
(58)	Field of S	60/641.8 earch 136/244, 251 136/291, 293, 258; 363/60, 147; 323/906 221; 60/641.8	If an inverter is merely attached to the back side of a solatery module, the inverter becomes an obstacle to transfer port and installation, it may be broken if it strikes a building structure at the time of installation and it may malfunction.				
(56)		References Cited	owing to impact with an object. Accordingly, a weather resistant film, a first filler, a solar battery element, a secon-				
	U.	S. PATENT DOCUMENTS	filler and a back reinforcing material are stacked in the orde mentioned and the fillers are melted using a vacuum lami				
		* 8/1980 Evans, Jr	nator to thereby seal the solar battery element in resi-				
	4,499,658 A 6,066,797 A	* 2/1985 Lewis	between the back reinforcing material and weather-resistant				
2002	20038667 A	1 4/2002 Kondo et al 136/293					
	10050200 A	1 * 5/2002 Kobayashi	back reinforcing material that opposes the solar batter				

Pilot Lab IP Asset Syntax Array

Title	Abstract	Application Date	Assignee(s)	All IPC	Patent Maintained?	Available to License?	Exclusive or Nonexlcusive?
Passive safety device and internal short tested method	A passive safety device for an energy storage cell	2010-10-27	NREL	H01M2/34 H01M10/48 H01M10/42	Yes	Yes	Both
High-Rate Overcharge- Protection	This invention relates to low-cost, electroactive-	2013-05-14	LBNL	H01M2/16	yes	Yes	both
Self-Regulating, Nonflamable Rechargeable	Berkeley Lab researchers created the first	10/30/2012	LBNL		yes	Yes	both
Self-healing compos	A battery electrode	i 11/9/2012	SLAC		Active	Yes	Both
METHOD AND STRATEGY FOR MULTIPLEXING	A method and apparatus for receiving a	2014-06-06	ANL	H01H47/00 G01R31/36	Yes	Yes	Both
Devices For Electrochemical System Analysis	have developed a device to measure quantitatively the	9/16/2015	NREL		Yes	Yes	Both
Passive safety device and internal short tested method	A passive safety device for an energy storage cell	2010-10-27	NREL	H01M2/34 H01M10/48 H01M10/42	Yes	Yes	Both
Fail-safe designs for large capacity battery systems	Fail-safe systems and design methodologies for	2012-09-27	NREL	G01N27/27 H01M10/48 H01M10/42	Yes	Yes	Both

Task 2: Common Agreements

- ☐ SLAC led the development of a common inter-institutional agreement that appoints a single party to lead licensing.
- ☐ IIA contemplates a common nonexclusive license agreement.

THE NATIONAL RENEWABLE ENERGY LABORATORY

AND

OAK RIDGE NATIONAL LABORATORY

AND

ARGONNE NATIONAL LABORATORY

AND

BROOKHAVEN NATIONAL LABORATORY

AND

BROOKHAVEN NATIONAL LABORATORY

AND

THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY

through the

SLAC NATIONAL ACCELERATOR LABORATORY

AND

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

through the

LAWRENCE BERKELEY NATIONAL LABORATORY

TO THE ORDER OF THE UNIVERSITY OF CALIFORNIA

LAWRENCE BERKELEY NATIONAL LABORATORY

TO THE Office of Energy Efficiency and Renewable Energy (EERE) Lab-Bridge Technology

Solutions Packaging and IP Bundling Project (Tab-Bridge Technology)

Task 3: Selection and Development of Technology Solutions Packages

- ORNL managed the down-selection and identification of five bundle prospects.
- White paper summaries of bundle composition, market info, IP, capabilities, key inventors.
- Lab technology experts continuing to refine details of bundles.

Criteria	Remarks
Is there a clear commercial opportunity?	i.e. must be able to develop a clear value proposition for industry
Is it a patent only deal? Are the patents all unencumbered?	i.e. the IP portfolio is ready and enabling for an option or license agreement
Does it need further development and knowhow?	i.e. do we need a partnership agreement with one or more labs in order to access expertise?
Does it need software or technical drawings in order to maximize its value?	i.e. do we need hybrid patent/software licenses? Does Open source play a role?
Does it require the use of user facilities to develop further	i.e. do we need to discuss user facility capabilities in the package?

Task 4: Industry Outreach

- ☐ ANL: Developing a Marketing Roadmap
- ☐ TechConnect:
 - ☐ Two IP Bundle Oral Presentations
 - □ Solid-State Li-Ion Battery IP bundle
 - ☐ PEM Fuel Cell IP bundle
- ☐ Obtain industry feedback

Goals/Metrics

- Number of IP portfolios that are generated.
- Successful development of common agreements.
- Identification of supporting capabilities from other labs.
- Number of in-person industry presentations.
- Number of license, option or collaborative research projects generated.
- Final Analysis of the pilot program, including effectiveness of the technology solution packages selection process, the feedback from industry meetings, and recommendation on refinement opportunities.