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Graphene has extremely low mass density and high mechanical strength, key qualities 

for efficient wide-frequency-response electrostatic audio speaker design. Low mass 

ensures good high frequency response, while high strength allows for relatively large 

free-standing diaphragms necessary for effective low frequency response.  Here we report 

on construction and testing of a miniaturized graphene-based electrostatic audio 

transducer.  The speaker/earphone is straightforward in design and operation and has 

excellent frequency response across the entire audio frequency range (20HZ – 20kHz), 

with performance matching or surpassing commercially available audio earphones. 
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Efficient audio sound transduction has a history dating back millions of years
1
.  Primitive 

insect singers generate loud and pure-tone sound with high efficiency by exciting resonators 

inside their body
2
.  Male crickets generate chirping sounds via stridulation

3
, where the scraper 

edge of one wing is rubbed against the ribbed edge of the other wing.  Advantageous structural 

properties of the wings (relatively large, low-mass flexural membranes) allow extremely efficient 

muscle-to-sound energy transduction.  In a human context, unnatural (i.e. non-voice) sound 

production has been explored for millennia, with classic examples being drumheads and whistles 

for long-range communications and entertainment
4
.  In modern society, efficient small-scale 

audio transduction is ever more important for discrete audio earphones and microphones in 

portable or wireless electronic communication devices.  

For human audibility, an ideal speaker or earphone should generate a constant sound pressure 

level (SPL) from 20 Hz to 20 kHz
5,6

, i.e. it should have a flat frequency response.  Most speakers 

available today reproduce sound via a mechanical diaphragm, which is displaced oscillatorily 

during operation.  The diaphragm, with inherent mass, restoring force (i.e. spring constant), and 

damping, essentially constitutes a simple harmonic oscillator.  Unlike most insect or  musical 

instrument resonators which exhibit lightly-damped sharp frequency response,  a wide-band 

audio speaker typically requires significant damping to broaden the response.  Unfortunately,  

“damping engineering” quickly becomes complex and expensive, with inevitable power 

inefficiencies.  

An alternative approach to response spectrum broadening is to reduce both the mass and spring 

constant of the diaphragm so that inherent air damping dominates and flattens the response 

peaks.  Moreover, with ambient air serving as the dominant damping mechanism, most input 
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energy is converted to a sound wave, which makes such speakers highly power efficient.  For 

these reasons (more detailed analysis is provided in the Supporting Information), the ideal audio 

transduction diaphragm should have small mass and a soft spring constant, and be non-perforated 

to efficiently displace the surrounding air.   Electrostatically-driven thin- membrane 

loudspeakers
7
 employing an electrically conducting, low-mass diaphragm with significant air 

damping have been under development since the 1920’s (the first were made of pig intestine 

covered with gold-leaf), but miniaturized electrostatic earphones are still rare.  One key reason is 

that the per-area air damping coefficient significantly decreases when the size of the diaphragm 

falls below the sound wavelength
8
.  Hence, for small speakers a thinner and lower mass density 

diaphragm is required to continue the dominance of air damping.  Such a diaphragm is difficult 

to realize.  If conventional materials such as metalized mylar are made too thin, they invariably 

fatigue and break. 

Graphene is an ideal building material for small, efficient, high-quality broad-band audio 

speakers because it satisfies all the above criteria.  It is electrically conducting, has extremely 

small mass density
9
, and can be configured to have very small effective spring constant. The 

effective spring constant of a thin circular membrane is
10

 

 4effk t  (1) 

where σ is the stress and t is the thickness of the membrane.  It is convenient to use per-area 

values for modeling the diaphragm vibration (see Su Information) since for a given membrane 

the mass per unit area is constant.  The equivalent per area spring constant is therefore 

 
2

4effk t
k

Area R


   (2) 

where R is the radius of the circular membrane.  We note that the spring constant k scales 

proportionally with the thickness of the membrane and inversely with the 2
nd

 power of the radius 
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of the membrane.  The exceptional mechanical strength of graphene
11

 makes it possible to 

construct large and thin suspended diaphragms, which effectively reduces k. 

Graphene was previously used to construct a thermoacoustic loudspeaker
12-14

.  In the 

thermoacoustic configuration graphene serves as a stationary heater to alternately heat the 

surrounding air thereby producing , via thermal expansion,  a time-dependent pressure variation, 

i.e. sound wave.  The method is especially effective in the ultrasonic region because of 

graphene’s small heat capacity (for this reason, carbon nanotube films can also be utilized
15-17

).  

However, for thermoacoustic speakers operating at audio frequencies, most input energy is 

dissipated by heat conduction through the air and does not generate sound
12

.  For example, the 

power efficiency for a graphene thermoacoustic speaker is exceedingly small, decreasing from 

~10
-6

 at 20 kHz to ~10
-8

 at 3 kHz
12,13

.  The thermoacoustic approach also suffers from sound 

distortion because the heating power is proportional to the square of the input signal and the 

transduction is therefore intrinsically non-linear
15

. 

We here describe an electrostatically driven, high-efficiency, mechanically vibrating graphene-

diaphragm based audio speaker.  Even without optimization, the speaker is able to produce 

excellent frequency response across the whole audible region (20 Hz~20 KHz), comparable or 

superior to performance of conventional-design commercial counterparts. 

Figure 1 shows schematically the electrostatically driven graphene speaker (EDGS). A 

multilayer graphene membrane is suspended midway between two actuating perforated 

electrodes.  The graphene is DC biased at VDC.  With no input signal, the electrostatic forces 

from the upper and lower electrodes balance.  When the two driving electrodes are driven with 

opposite polarity at Vin, the total electrostatic force applied on graphene is (per unit area) 

    
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where F1 and F2 are force magnitudes due to the respective electrodes, ε is the electric 

permittivity of air, and d is the nominal distance between graphene and electrodes.  Eq. (3) 

shows that the actuating force is linearly proportional to the input signal, a key advantage for low 

sound distortion.  A protective SiO2 layer is deposited on the electrodes to prevent the graphene 

from accidentally shorting to the electrodes at very large drive amplitude.   

 

Figure 1.  Schematics of the graphene-based EDGS speaker.  A graphene diaphragm, biased by a 

DC source, is suspended midway between two perforated electrodes driven at opposite polarity.  

The varying electrostatic force drives the graphene diaphragm which in turn disturbs air and 

emits sound through the electrodes.  The light mass and low spring constant of the graphene 

diaphragm, together with strong air damping, allow for high-fidelity broad-band frequency 

response.  Such a speaker also has extremely high power efficiency. 

 

To fabricate the EDGS structure the graphene is first attached to a suspension frame (Figure 

2a), which is then sandwiched between separately fabricated electrodes (Figure 2b).  Multilayer 
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graphene is synthesized on 25-µm-thick nickel foil in a CVD furnace at 1000 ºC
18-20

.  The foil is 

first annealed at 1000 ºC for 1 hour with 50 sccm hydrogen flow at 200 mTorr, after which the 

hydrogen flow is increased to 100 sccm and methane is introduced at 5 sccm to start the growth 

process.  The growth pressure is 2 Torr.  After 20 minutes, the furnace is turned off and the 

nickel foil is quickly removed from the hot zone to allow the formation of graphene layers.  After 

the growth, a self-adhesive circular frame (Avery® ETD-909, 60 µm thick) with 7 mm diameter 

opening is attached on the nickel foil.  The foil is then etched away with 0.1 g/ml FeCl3 solution, 

so that the graphene membrane is only attached to and supported by the circular frame.  The 

frame is first transferred to fresh DI water bath several times to clean the etchant residue, and 

then immersed in acetone.  We find that the multilayer graphene diaphragm is strong enough to 

be directly dried in air by pulling the frame out from acetone.   

 

Figure 2.  Images of (a) 7mm diameter graphene diaphragm suspended across annular support 

frame, (b) actuating electrodes, and (c) assembled speaker. 

(a) (b) 

(c) 
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The thickness of the free-standing graphene diaphragm is determined by light transmission 

measurement to be ~30 nm (22%~25% transmission).  The electrical contact to the graphene 

diaphragm is made by attaching a 20-µm-diameter gold wire to the portion of graphene lying on 

the supporting frame.  Another circular frame is attached to the original frame from the opposite 

side (so that the graphene diaphragm is sandwiched between them) to fix the gold wire.  The 

frames also serve as spacers between graphene and the electrodes in the speaker assembly.  The 

gap distance can be increased by stacking multiple (empty) frames on each other.  For the results 

presented here we use two frames on each side of the graphene, which gives a gap distance d = 

120 µm. 

The electrodes are constructed from silicon (525 µm thick, resistivity 10 Ohm·cm, test grade).  

A photolithography and deep-reactive-ion-etching step are used to construct through-wafer 

square holes of 250 µm wide as sound emitting windows.  A 500 nm protective wet thermal 

oxide layer is then grown on the wafer at 1050 ºC (Figure 2b).  The wafer is then diced as 

electrodes.  Dicing the wafer also exposes the silicon so that electric connections are made by 

attaching conductive wires to the edges of the electrodes with silver paste. 

For prototype demonstration, two electrodes and one graphene diaphragm are simply 

sandwiched together and held by a spring clip.  In another implementation,  a 7 mm inner-

diameter pipe, serving as a wave guide, is perpendicularly attached to the surface of the 

electrodes to facilitate sound coupling between the speaker and a listener’s ear (Figure 2c).  This 

improves far-field efficiency for a small speaker operating at wavelength larger than the 

diaphragm size. 
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We now describe performance tests for the EDGS speaker. VDC=100 V is used to bias the 

device, and the input sound signal is introduced from a signal generator or from a commercial 

laptop or digital music player.  The maximum amplitude of the input signal Vin used in the test is 

10V.  The operation current is usually a few nano-amps, indicating very low power consumption 

(<<1 µW) and high power efficiency.  In fact, the power efficiency of an electrostatic speaker 

can be exceedingly high (close to 1) because the power dissipation path is almost pure air 

damping
7
, which converts the mechanical vibration of diaphragm to sound.  Magnetic coil type 

earphones (the type used today for virtually all earphone applications) typically have efficiencies 

<0.1.  

The sound generated by the graphene speaker is easily audible by the human ear.  The fidelity 

is qualitatively excellent when listening to music.  To quantitatively characterize the speaker, the 

frequency response curve is measured from 20 Hz to 20 kHz and compared to a commercial 

earphone of similar size (Sennheiser
®
 MX-400).  The sound card in a laptop computer 

(SoundMAX
®
 Integrated Digital HD Audio) is used to generate equal-amplitude sine waves, and 

a commercial condenser microphone (SONY
®

 ICD-SX700) is used to measure the sound 

pressure level (SPL) at different frequencies.  The software is Room EQ Wizard.   

Figure 3 shows the sound pressure level over the relevant audio frequency range for the EDGS 

speaker (Figure 3a), the Sennheiser
®
 MX-400 (Figure 3b), and a miniature thermoacoustic 

speaker (Figure 3c, adapted from Ref. 13).   The graphene speaker, with almost no specialized 

acoustic design, performs comparably to a high quality commercial headset.  Moreover, the high-

frequency performance of the EDGS (Figure 3a) is markedly better than that for the MX-400 

thanks to the extremely low-mass diaphragm.  In the low frequency region, the EDGS and MX-

400 response curves both bend downward, largely due to limited capability of the sensing 
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microphone and restricted coupling between the speaker and microphone.  Even so, the low-

frequency performance of the EDGS speaker is markedly superior to that predicted for a 

thermoacoustic speaker (dashed line, Figure 3c)).  At very high frequencies (>10kHz), the 

thermoacoustic speaker maintains its excellent high frequency response, but, as mentioned 

above, the power efficiency is at least six orders of magnitude lower than that for the EDGS, 

which makes it impractical for most portable applications. 

 

Figure 3. Frequency response of various miniature audio speakers.  a) Graphene diaphragm 

EDGS speaker (this work); b) Commercially available Sennheiser
®

 MX-400 magnetic coil 

speaker; c) Thermoacoustic speaker.  The points in panel c) are experimental data from ref. 13, 
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while the solid red line is the theoretically predicted behavior for an ideal thermoacoustic 

speaker.  The EDGS speaker performs noticeably better than the commercial voice-coil speaker 

at high frequencies, both in terms of maintaining high response and avoiding sharp resonances 

(the slow oscillations in the EDGES curve are due to sound wave interference in the space 

between the speaker and microphone and they depend on the relative position of the speaker and 

microphone, but the main trend is consistent).  In the low frequency region, both EDGES and the 

MX-400 perform well, while the thermoacoustic response falls precipitously already below 

15kHz.  The decrease in the response curves in a) and b) at very low frequency are largely due to 

limited capability of the microphone and the inefficient coupling between the speaker and 

microphone.   

 

The speaker-to-microphone performance test has limited accuracy, because the measured 

response curve is for the whole system - from the sound card to amplifier, to speaker, to 

microphone, and finally back to sound card.  Every transduction introduces some distortion in 

the measurement.  For example, the response is sensitive to the relative position between the 

speaker and the microphone.  Since the focus of this letter is not the detailed acoustic design of a 

complete sound system but rather the capability of the EDGS graphene diaphragm, we employ 

laser Doppler velocimetry (LDV) to directly measure the mechanical response limits of the 

diaphragm.  The measured frequency response is illustrated in Figure 4.  Within experimental 

error the LDV frequency response curve for the EEGS diaphragm is relatively flat from 20Hz to 

20kHz, which is the desired response of an ideal speaker diaphragm.  
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Figure 4: Vibration velocity of graphene diaphragm in EDGS v.s. frequency, measured by Laser 

Doppler Velocimetry (LDV).  Such a measurment is useful because it eliminates extrinsic effects 

(e.g. acoustic structural design, sound card, microphone response), and represents the “pure” 

response of the graphene diaphragm itself.  Within the error limit of the LDV setup, the response 

curve appears to be quite flat, indicating that graphene serves as an ideal key component for 

loudspeakers. 

 

In summary we have demonstrated a robust speaker built from multi-layered graphene 

diaphragm.  The diaphragm is driven electrostatically and reproduces sound with high fidelity.  

The CVD grown graphene on nickel foil is straightforward and the technique can be easily 

scaled to construct larger speakers by arraying the graphene diaphragm.  The configuration 

described in this letter could also serve as a microphone.  The microphone should also have 

outstanding response characteristics due to the graphene’s ultra-low mass and the excellent 

coupling to ambient air. 
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APPENDIX: Modeling a loudspeaker using harmonic oscillator. 

To examine why the ideal diaphragm for speakers should have small mass and spring constant, 

we model the diaphragm as a 2
nd

 order spring-damping-mass system, where the mass comes 

from the diaphragm (as well as the actuating element if it is vibrating together with the 

diaphragm, which is often true for most speakers where the force-generating coil is directly 

attached to the diaphragm), the damping force comes from the air, and the spring represents the 

restoring force that brings the diaphragm to the balanced position. 

The equation that describes the movement of the diaphragm is given by 

 mx x kx F       (S1) 

where m is the mass,  is the damping coefficient, k is the spring constant, and F is the driving 

force applied on the diaphragm.  When driving by a sinuous signal at frequency ω, the vibration 

amplitude is 

 
1

F
x

i k i m  


 
  .   (S2)  

Here the vibration amplitude is represented in terms of velocity rather than displacement, 

because SPL is directly determined by the velocity amplitude of air: 

 
SPL c x

     (S3) 

where c is the sound velocity and ρ is the mass density of air.  From Eq. (S2), we find that 

large k results in poor low frequency response (the ω
-1

 term in denominator), while large m 

results in poor high frequency response (the ω term in denominator).  As a result, to maintain 

constant SPL across the whole frequency region, the spring constant k and the mass of the 

diaphragm m should both be significantly smaller than the air damping coefficient   (strictly 
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speaking, the criteria should be 
1 ,?max mink m     

, where ωmax and ωmin represent the 

upper and lower bound of the interested frequency region).  
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