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S U M M A R Y
New techniques for improving both the computational and imaging performance of the three-
dimensional (3-D) electromagnetic inverse problem are presented. A non-linear conjugate
gradient algorithm is the framework of the inversion scheme. Full wave equation modelling for
controlled sources is utilized for data simulation along with an efficient gradient computation
approach for the model update. Improving the modelling efficiency of the 3-D finite difference
(FD) method involves the separation of the potentially large modelling mesh, defining the set of
model parameters, from the computational FD meshes used for field simulation. Grid spacings
and thus overall grid sizes can be reduced and optimized according to source frequencies and
source–receiver offsets of a given input data set. Further computational efficiency is obtained by
combining different levels of parallelization. While the parallel scheme allows for an arbitrarily
large number of parallel tasks, the relative amount of message passing is kept constant. Image
enhancement is achieved by model parameter transformation functions, which enforce bounded
conductivity parameters and thus prevent parameter overshoots. Further, a remedy for treating
distorted data within the inversion process is presented. Data distortions simulated here include
positioning errors and a highly conductive overburden, hiding the desired target signal. The
methods are demonstrated using both synthetic and field data.

Key words: Numerical solutions; Inverse theory; Marine electromagnetics.

1 I N T RO D U C T I O N

Controlled source electromagnetic (CSEM) techniques use the elec-

tromagnetic energy of an artificial transmitter for detecting contrasts

in the subsurface electrical conductivity. The bulk conductivity of

rocks is dominated by the content of pore fluids, owing to the typi-

cally strong contrast between the highly resistive minerals and non-

mineral substances, such as water, brine, or hydrocarbons. Even pore

fluid substances can exhibit conductivity contrasts which are easily

detectable by CSEM methods. While saline formation water has a

typical resistivity range between 0.5 and 2� m, the resistivity of hy-

drocarbon filled rocks can be up to two orders of magnitude larger

(Schlumberger 1987). This has recently made the marine CSEM

technique emerge with considerable potential of providing valu-

able complementary data to seismic hydrocarbon mapping. Seismic

methods have a long and established history in hydrocarbon explo-

ration, because they are proven to be very effective in mapping geo-

logical horizons with contrasting acoustic properties. CSEM meth-

ods, on the other hand, may delineate the different types of fluids

within the horizon. With the marine CSEM method, a deep-towed

electric bipole transmitter is used to excite a low-frequency (typ-

ically 0.1–10 Hz) electromagnetic signal that is measured on the

sea floor over electric and magnetic field detectors, where larger

transmitter–detector offsets can exceed 15 km (MacGregor & Sinha

2000; Eidesmo et al. 2002; Ellingsrud et al. 2002). With the current

technology, typical depths of investigation range from 1 to 4 km for

offshore prospects.

Large-scale CSEM three-dimensional (3-D) geophysical imag-

ing is now receiving considerable attention (Carazzone et al. 2005).

While one-dimensional (1-D) modelling is relatively easy and trial

and error 3-D forward modelling straight forward (Hoversten et al.
2006; Weiss & Constable 2006), the need for 3-D imaging is nec-

essary as the search for hydrocarbons now increasingly occurs in

highly complex and subtle offshore geological environments. This

also further emphasizes the importance of combining the informa-

tion obtained by CSEM surveys with existing 3-D seismic depth

migration technologies (Hoversten et al. 2000). Faster 2-D CSEM

imaging has some relevance to this problem. However, because of

its assumption of 2-D geology, it cannot always be relied upon for a

consistent treatment of the real environment, especially when mea-

surements are made on survey grids specifically designed for 3-D

imaging experiments (Carazzone et al. 2005).

In this study, we present techniques which further advance the

3-D CSEM inversion technique. Its inherently high computational

requirements are a main obstacle to industrial applications. Whether

finite volume, finite element, or finite difference (FD) techniques are

used for simulating measurements in three dimensions, the mod-

elling grids designed for approximating complex geology on a large

scale usually become too computationally expensive for carrying out

fast forward simulations. On the other hand, industrial large-scale
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Figure 1. Illustration of scheme for mapping between model and simulation

grid. (a) shows the equal-grid case. (b) illustrates the case of different grids

in two dimensions.

3-D surveys with vast data volumes require both large modelling

grids as well as many forward simulations; each CSEM transmitter

location requires a separate forward calculation for simulating its

response. To mitigate this problem, we present a method where the

computational simulation grids are decoupled from an underlying

common modelling grid. The latter represents the conductivity vari-

ation within the survey area. A simulation grid can then be adapted

and thus optimized specifically to the geometries and offsets of a

given transmitter and its detectors.

Since CSEM inversion is an ill-posed problem, implementation

of constraints is important in reducing the solution ambiguity. We

present new types of constraints, realized by model parameter trans-

formation functions, to address this issue. Thereby, the electrical

conductivity updates during the inversion process are restricted such

that non-realistic results are suppressed.

A further technique outlined in this paper aims at efficiently using

computing resources for the case of very large data sets. It is realized

by the combination of two different levels of parallelization. On the

first level, the solution of the forward simulation problem is dis-

tributed among a bank of processors. This solution parallelization

scales linearly up to a point where the necessary message passing

required for completing matrix–vector multiplications in the itera-

tive solution becomes dominant. To maintain the ability to use an

arbitrarily large number of processors without a prohibitive mes-

sage passing overhead, the solution of multiple forward problems is

further distributed among groups of processor banks.

Furthermore, we have experimented with the source signature es-

timation applied to the CSEM inversion problem. While the source

signature estimation problem is common in seismic waveform inver-

sion, it also promises to alleviate data distortions in both amplitude

and phase which might otherwise have negative effects on CSEM

inverse modelling.

After introducing the theory for both the CSEM inverse and for-

ward problems, the grid separation technique is outlined. Key to this

approach is a proper material averaging scheme to map the conduc-

tivity parameters of the geological model to the computational grids

used for the field solution in the forward problem. Consequently, the

inverse problem requires an inverse mapping scheme to update the

model parameters from the field solutions obtained on the compu-

tational simulation grids. In an earlier work (Commer & Newman

2005), we applied similar multigrid concepts to a finite-difference

time-domain modelling scheme. This involved the averaging of ma-

terial properties on a sequence of coarser simulation grids.

We next present various marine CSEM imaging scenarios us-

ing synthetic data to demonstrate the highly improved efficiency

achieved by optimizing the simulation grids. This also includes in-

version examples where the source signature estimation problem is

solved within the inversion framework in order to correct for highly

distorted data. At last, the inversion of real field data is presented,

where the grid separation method is also further demonstrated. We

use a data set of the Troll West Gas Province, located offshore

Norway (Gray 1987). These measurements have been used for cal-

ibration purposes and modelling studies, since the data is known

to contain strong signals caused by a large hydrocarbon reservoir

(Johansen et al. 2005; Hoversten et al. 2006).

2 P RO B L E M F O R M U L AT I O N

We give a brief introduction of both the inverse and forward simu-

lation problem. This shall provide the necessary framework for the

concept of separating the model parameter grid from the computa-

tional simulation grids, presented later. A more detailed formulation

of the EM inverse problem can be found in the works of Newman

& Alumbaugh (1997, 2000) and Newman & Hoversten (2000).

The inverse problem is formulated by the minimization of the

error functional,

� = 1

2
[D(do − dp)]H[D(do − dp)] + 1

2
λ(Wm)H(Wm), (1)

where H denotes the transpose-conjugation operator. In the above

expression, the predicted and observed data vectors are denoted by

dp and do, respectively, where each has N d complex values. These

vectors consist of electric or magnetic field values specified at the

measurement points. The predicted data are determined through

solution of the forward modelling problem, discussed below. We

have also introduced a diagonal weighting matrix, DNd ×Nd , into the

error functional to compensate for noisy measurements; it is typ-

ically based on the inverse of the standard deviations of the

measurements.
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Figure 2. Graph of the hyperbolic and logarithmic inversion parameter transformations, given by eqs (11) and (14). The example shows the values of mk for

values of a = 0.1, b = 3 and −10 < x k < 10.

Table 1. List of model and simulation grids for synthetic data gen-

eration and inversion.

Grid Number of cells Spacing �(m) f (Hz)

�0
M 200 × 200 × 200 50

�M 134 × 134 × 134 75

�1
S 50 × 50 × 50 200 0.25

�2
S 80 × 80 × 80 125 0.75

�3
S 100 × 100 × 100 100 1.25

In eq. (1), the properties of the model space are given by the

vector m. In our FD formulation, the model space consists of a

3-D mesh of rectangular cells, where the inversion domain can be

represented by the whole model space or a subset of it. Each cell

has electrical conductivities, dielectric and magnetic permeability

properties assigned to it. Here, we only consider varying electrical

conductivities σ as unknowns in the inverse problem.

The second term in eq. (1) is a regularization term which acts

on the parameter unknowns and is required to stabilize the mini-

mization of the error functional. Many choices are available. In our

past work, we have focused on a class of conductivity models using

Tikhonov regularization that exhibit smoothly varying properties.

Thus we introduce a matrix W, based upon a FD approximation

to the Laplacian (∇2) operator applied in Cartesian coordinates, to

reduce model curvature in three dimensions. The influence of the

smoothing constraint is controlled by the parameter λ. A common

recipe for its selection is based upon a cooling approach (Haber &

Oldenburg 1997). One carries out multiple solutions to the inverse

problem starting with a large fixed value for λ. As λ is reduced, the

data error, represented by the first term in eq. (1), will decrease.

The process of reducing λ can then be repeated until the data error

agrees with a target misfit based upon the assumed noise content of

the data.

2.1 Non-linear conjugate gradient minimization

In large-scale non-linear problems, as considered here, we shall min-

imize (1) using gradient-based optimization techniques because of

their minimal storage and computational requirements. We char-

acterize these methods as gradient-based techniques because they

employ only first derivative information of the error functional in

the minimization process. Gradient-based methods include steepest

descent, non-linear conjugate gradient (NLCG) and limited mem-

ory quasi-Newton schemes. Newman & Boggs (2004) provide detail

derivation of the gradients and an efficient scheme for their compu-

tation. Here, the focus is on a NLCG minimization approach because

our past experiences have shown it to be the most efficient. The pre-

conditioned NLCG algorithm we use in the minimization of eq. (1)

is written as follows.

NLCG Algorithm

(1) set i=1, choose initial model mi and compute ri =−∇�(mi )

(2) set ui = M−1
i ri

(3) perform line search to find α i that minimizes �(mi + α i ui )

(4) set mi+1 = mi + α i ui and compute ri+1 = −∇�(mi+1)

(5) stop when |ri+1| < ε, otherwise go to step 6

(6) set β i+1 = (rT
i+1M−1

i+1ri+1 − rT
i M−1

i ri )/rT
i M−1

i ri

(7) set ui+1 = M−1
i+1ri+1 + β i+1ui

(8) set i = i+1 and go to step 3.

The matrix operator M−1
i in the algorithm is a pre-conditioner,

which steers and scales the conjugate search direction ui such that

it more closely approximates the Newton direction. A properly cho-

sen pre-conditioner has a tremendous impact in accelerating the

algorithm’s convergence (Newman & Boggs 2004), however at a

higher computational expense. To use the NLCG algorithm sensi-

bly also requires efficient computation of the gradient r. Sometimes,

implementations of NLCG include a very accurate line search to en-

sure conjugacy. However, for the 3-D problems this is not practical

because the evaluation of the error functional is very expensive.

Moreover, conjugacy has little meaning in the non-linear and non-

quadratic context. Instead, we have developed a procedure that gives

an acceptable decrease of the functional with a minimal number of

evaluations. Newman & Alumbaugh (2000) discuss the issue and

show that it is possible to achieve acceptable decreases in the error

functional using a line search based upon quadratic interpolation,

safeguarded with back tracking. Usually, an additional forward mod-

elling application per source, defined by a transmitter operating at a

specific frequency, is all that is needed for the line search. This yields
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516 M. Commer and G. A. Newman

Table 2. Computational times and resources needed for all inversions carried out in this work. Hardware

specifications: Intel(R) Xeon(TM) CPU 3.60 GHz.

Inversion Number of CPUs Computing time Total computing

number (n x × n y × nz × nd ) Iterations per iteration (min) time (hr)

1a (reference) 144 (3 × 4 × 4 × 3) 87 32.5 47.1

1b (coarse-grid) 144 (3 × 4 × 4 × 3) 97 5.1 8.2

2a (reference) 27 (3 × 3 × 3 × 1) 80 50.2 66.9

2b (coarse-grid) 27 (3 × 3 × 3 × 1) 75 1.3 1.6

3 100 (5 × 5 × 4 × 1) 250 4.7 20.0

4 64 (4 × 4 × 4 × 1) 150 0.6 1.6

5a 64 (4 × 4 × 4 × 1) 21 4.4 1.6

5b 64 (4 × 4 × 4 × 1) 24 15.4 6.2

5c 64 (4 × 4 × 4 × 1) 33 4.2 2.4

5d 64 (4 × 4 × 4 × 1) 58 21.7 21.0

6 128 (4 × 4 × 4 × 2) 172 19.8 56.7
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Figure 3. Inversion 1: Transmitter–receiver configuration for synthetic data

generation of a single-profile seafloor survey.

three forward modelling applications per source and per inversion

iteration.

2.2 The forward problem

Minimization of eq. (1) involves the error functional gradient ∇�,

that is, the derivative of � with respect to the model parameters in

the vector m. The data part of � and the predicted data dp are linked

directly through the forward problem. It is described by the time

harmonic Maxwell equations in the diffusive approximation,

σE − ∇ × H = −J (2)

∇ × E + iωμ0H = −M, (3)

where a time dependence of eiωt is assumed (i = √−1). For CSEM

applications, the typical range of the angular frequency ω allows us

to neglect displacement currents.

Applied currents generate the electric and magnetic fields, E and

H, and are denoted by J and M for electric and magnetic sources,

respectively. The Earth’s electrical conductivity σ is a function of

position that is allowed to vary in three dimensions. On the other

hand, we set the magnetic permeability μ to its free space value

μ0. Variations in the magnetic permeability are rare, and are usually

confined to magnetic ores and some volcanic soils.

Our solution method for the forward modelling problem is based

upon the consideration that the number of model parameters, re-

quired to simulate realistic 3-D geology, can typically exceed 107.

Finite difference modelling schemes are ideally suited for this task,

because they can be parallelized to handle large-scale problems that

cannot be easily treated otherwise (Alumbaugh et al. 1996). Af-

ter approximating the Maxwell equations on a staggered grid (Yee

1966) at a specific angular frequency, using finite differencing and

eliminating the magnetic field (Alumbaugh et al. 1996), we obtain

a linear system for the electric field,

KE = S, (4)

where K is a sparse complex symmetric matrix with 13 non-zero

entries per row. The dimension of K is N e × N e, where N e is the

FD grid’s total number of edges. Its diagonal entries depend explic-

itly on the electrical conductivity, σ . The conductivity distribution

throughout the model space is to be estimated by the inversion pro-

cess. Since the electric field, E, also depends upon the conductivity,

implicitly, this gives rise to the non-linearity of the inverse prob-

lem. The fields are sourced with a grounded wire or loop embedded

within the modelling domain. The corresponding discrete source

vector S includes Dirichlet boundary conditions imposed upon the

problem. To avoid excessive meshing near the source, we favour a

scattered-field formulation to the forward problem. In this instance,

E is replaced with Es in eq. (4). The source term, for a given trans-

mitter, will now depend upon the difference between the 3-D con-

ductivity model and a simple background model, weighted by the

background electric field, Eb, where E = Eb + Es. We favor simple

background models, such as whole space or layered half-space mod-

els that can be easily and rapidly simulated. Given the solution of the

electric field in eq. (4), the magnetic field can be easily determined

from a numerical implementation of Faraday’s law,

H = 1

−iωμ0

∇ × E. (5)

For realistic earth imaging, involving a large amount of data and

hence many sources, a large number of solutions to eq. (4) fol-

lows. Consequently, an efficient solution process is paramount. We

solve the forward problem to a predetermined error level using it-

erative Krylov subspace methods, using either a biconjugate gradi-

ent (BICG) or quasi-minimum residual (QMR) scheme with pre-

conditioning (Alumbaugh et al. 1996). In general we employ the

QMR method with a Jacobi pre-conditioner for marine CSEM type
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Figure 4. Inversion 1: Error functional �, according to eq. (1), of synthetic single-profile data inversion.

problems. More elaborate pre-conditioners have been tested and

shown to be not that effective for this problem. These include sim-

ple Neumann and Least-Squares polynomials, incomplete Cholesky

factorization, and algebraic multigrid (AMG) (Newman et al. 2004).

The AMG scheme is the most elaborate of the pre-conditioners

tested, and attempts to preserve the null space of the Maxwell op-

erator through properly designed grid transfer operators. While this

scheme can produce very fast solutions to the forward problem, it

thus far has been found to be unstable for use with highly com-

plex models. Another pre-conditioner considered has been found

advantageous for low induction numbers (Newman & Alumbaugh

2002). This owes to the poor solution convergence, caused by a

large null-space of the curl–curl operator contained in the matrix

K of eq. (4), as the field excitation frequency approaches the static

limit. However, for the frequencies considered in this work, we ex-

pect relatively small solution time improvements, compared to the

improvements achieved by optimized grids.

3 O P T I M I Z AT I O N O F T H E

S I M U L AT I O N M E S H

We assign a conductivity parameter, σ k , k = 1, . . . , M , to each cell of

the model domain, where M equals the total number of model cells.

In the following, the model grid is denoted by �M . The subset �m ⊆
�M shall represent the inversion domain, with m model unknowns.

The parameter σ k is real valued and collectively stored in the model

vector m = � M , which is piecewise constant. Further, the finite-

difference simulation grid �S of size N c, where N c equals the

number of FD mesh cells, is introduced. Both grids are Cartesian

with conformal grid axes along the x, y, and z-directions. Usually,

one has �S = �M (N c = M). For most cases within this work, the

(computational) optimization involves coarser and/or smaller (in

terms of grid extensions) simulation meshes, hence N c < M .

The solution of the forward problem requires a conductivity map-

ping from �M to �S , that is, the computation of an effective con-

ductivity on the edges of the FD mesh, where the electric fields

E are sampled. For a given 3-D mesh �S we define the vector of

directional edge conductivities,

�S = (
σ x

1 , σ
y

1 , σ z
1 , . . . , σ x

ic
, σ

y
ic
, σ z

ic
, . . . , σ x

Nc
, σ

y
Nc

, σ z
Nc

)T

= (
σ e

1 , . . . , σ e
ie
, . . . , σ e

Ne

)T
,

for building the N e × N e FD stiffness matrix K of the linear system

(4). Note that N c and N e denote the total number of grid cells and

edges, respectively, belonging to the grid �S . To compute the edge

conductivities, we introduce a linear mapping operator MNe×M ,

M(�M ) = �S, (M : �M → �S).

Consider a given edge i e, belonging to the cell i c of the FD mesh

�S , for the example of an edge along the x-axis. In the case �M =
�S , the corresponding element of � S is computed from

σ e
ie

= σ x
ic

=
4∑

i=1

σiwi , wi = dVi∑4
j=1 dVj

, (6)

where w i are weights determined by volume fractions. Fig. 1(a)

shows that the four cell conductivities σ i are given by the four model

cells connected by the edge where σ x
ic (red arrow) is sampled. These

four adjoining cells describe a parallel circuit. Hence, each line of

the matrix operator MNe×M involves an arithmetic average of the

form as in eq. (6). For the equal-grid case, its corresponding edge

i e thus has four non-zero entries wi = 1
4
.

In the case �M �= �S , we employ a material averaging scheme

based on an integro-interpolation method mentioned by Moskow

et al. (1999). In principle, the method allows to compute edge con-

ductivities on the grid �S from a series of parallel circuits on �M .

Moreover, there may exist an arbitrary translation, assuming confor-

mal grid axes, between �M and �S . It can be seen that the example

of eq. (6) represents a special case of the more general formulation

σ e
ie

= σ x
ic

=
⎡
⎣ J∑

j=1

(
1

Vj

I j∑
i=1

σi dVi

)−1

�x j

⎤
⎦

−1

�Xic , (7)

where

(i) �X i c = length of the edge i e (here along the x-axis),

(ii) J = number of discrete parallel circuits P j along �Xic ,
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Figure 5. Inversion 1: Data fits for all seven sources (survey configuration shown in Fig. 3), exemplified for the excitation frequency f = 0.25 Hz. Initial (grey)

and final fits (red) for both reference and coarse-grid inversions are shown.

(iii) V j = total volume of a discrete parallel circuit P j ,

(iv) I j = number of model mesh cells included in the volume

V j or overlapped by V j ,

(v) dV i = volume fraction of σ i contributing to a parallel circuit

P j .

(vi) �x j = segment length of the parallel circuit P j (here along

the x-axis).

In eq. (7), the inner arithmetic average produces the effective con-

ductivity owing to a parallel circuit of the conductors σ i. Further, the

outer sum represents a serial integration of the parallel circuits along

the total edge length �X i c, where
∑J

j=1 �x j = �Xic . The averag-

ing scheme is best illustrated in two dimensions. In Fig. 1(b), �M

and �S are indicated by the black and red grid lines, respectively.

For this case one has J = 4, I j = 2 for all j, and the dependen-

cies of P j on the overlapped cells of �M are: P 1(σ 1, σ 4),P 2(σ 2,

σ 4), P 3(σ 3, σ 4),P 4(σ 3, σ 5). Each volume d V i is given by the

overlap of the integration area assigned to the edge σ x
ic

(shown in

pink) with the volume of the corresponding model cell σ i . Note that∑I j
i=1 dVi = Vj . Obviously, to obtain σ

y
ic

and σ z
ic

for the 3-D case,

this serial/parallel circuit integration is carried out along the y and

z edges of the simulation grid cell i c, respectively.

Since the inversion unknowns σ k belong to �m, a mapping from

�S to �m is required for computation of the gradient vector r in

the NLCG algorithm. Consider the data component, ∇�d , of the

gradient, that is the term −∇�(m) involving only the first term of

the right-hand side of eq. (1),

∇�d = −Re{[DJ]T [D(do − dp)]∗}.

Computing ∇�d implicitly requires the Jacobian, J. Note, however,

that we never form J explicitly. Its elements are

Jjk = ∂d p
j

∂σk
, j = 1, . . . , Nd ; k = 1, . . . , M.
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Figure 6. Inversion 1: Final model solution for reference (upper) and coarse-grid (lower) inversions.
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Figure 7. Inversion 2: Error functional �, according to eq. (1), of synthetic single-profile data inversion.

In terms of the electric field, a Jacobian element is defined by

Jjk = qT
j

∂E

∂σk
,

where q j is the jth column vector of a N d × N e(N d = size of

do) interpolation operator, which maps the electric field solution E
from �S onto the N d detector locations defined on �M . The data

sensitivities ∂E
∂σk

follow from differentiating eq. (4) with respect to

the model unknowns σ k (Newman & Hoversten 2000),

∂E

∂σk
= K−1

(
∂S

∂σk
− ∂K

∂σk
E

)
. (8)

Note that the term ∂S
∂σk

is non-zero/zero for a scattered/total field so-

lution. The data sensitivity for the kth model parameter has non-zero

entries for these edges i e that have a contribution from σ k through

the average (7). In the case �M = �S , this amounts to 12 edge con-

tributions, arising from the edges that define the boundaries of the

model cell σ k . In other words, as illustrated by the additional arrows

Journal compilation C© 2007 RAS, 172, 513–535

No claim to original US government works



520 M. Commer and G. A. Newman

Figure 8. Inversion 2: Final model solution for reference (upper) and coarse-grid (lower) inversions.

in Fig. 1(a), there are four edge conductivities for each Cartesian

direction, which depend on σ k through their corresponding average

exemplified by eq. (6). In the general case, we denote the number of

edge contributions by N e(k). Then it follows from the chain rule

∂K

∂σk
=

Ne (k)∑
n=1

∂K

∂σ e
n

∂σ e
n

∂σk
, (9)

and a similar expression for ∂S
∂σk

. The inner derivatives,
∂σ e

n
∂σk

, of (9)

are obtained from the derivative of eq. (7),

∂σ e
n

∂σk
= σ e

n
2

�Xic

J ′∑
j=1

�x j

(
1

Vj

I j∑
i=1

σi dVi

)−2

dVk

Vj
. (10)

Here, J ′ ≤ J is the number of segments (parallel circuits P j ′ ) with

a non-zero contribution from σ k . For �M = �S , one has J ′ =
1, �x j ′ = �Xic , and hence

∂σ e
n

∂σk
= wk , which are the corresponding

weighting coefficients of the simple average (eq. 6). The general

case is again illustrated in two dimensions in Fig. 1(b). For this

example, the model cell σ 4 (yellow rectangle) shall also correspond

to the fourth model unknown (k = 4). Then eq. (10) becomes

∂σ x
ic

∂σ4

= σ x
ic

2

�Xic

3∑
j=1

�x j

(
1

Vj

2∑
i=1

σi dVi

)−2
dV4

Vj
.

Here, J ′ = 3, because σ 4 contributes to the three parallel circuits

P 1(σ 1, σ 4), P 2(σ 2, σ 4) and P 3(σ 3, σ 4).

4 I M P L E M E N TAT I O N

O F C O N S T R A I N T S

Implementation of constraints is helpful in reducing solution ambi-

guity in the imaging process and avoiding non-physical conductivity

estimates, that is, negative or unrealistically high conductivity es-

timates. Here, we consider box constraints to restrict the electrical

conductivity within the imaging volume to be bounded. Specifically,

one requires

ak < mk < bk,

for the kth model parameter. Here, we consider box constraints to

bound the electrical conductivity within the imaging volume. An

active set method requires the model update to be strictly feasi-

ble. When components of the current model are on the bounds, the

method checks the steepest descent direction to determine if the

corresponding components of the pending model update will be no

longer feasible. If this is the case, we deflate to zero those corre-

sponding components in the search direction that will be used in

the line search process to update the model. Hence, there will be

no changes in these model components on the bounds during and

after the update. On the other hand, if during the line search, a trial

step shows that a bound would be violated, backtracking along the

deflated search direction keeps the updated model strictly feasible.

Implementation of an active set scheme to enforce bound constraints

is straight forward, but may cause convergence degradation of the

NLCG algorithm (Nocedal 1995).

An alternative involves usage of transformation functions that

map the bounded conductivity parameters to an unbounded domain

in the transform space. Our inversion scheme allows to choose be-

tween two such transformations. The first is an inverse hyperbolic

tangent transformation and the second is based on log parameters. In

effect, both schemes transform a constrained inverse problem to an

unconstrained type. Similar types of transformations within mul-

tidimensional frequency- and time-domain inversion frameworks,

based on logarithmic parameters, have been quite effective in insur-

ing that the electrical conductivity is strictly positive (Newman &

Alumbaugh 2000; Commer et al. 2006).
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Figure 9. Inversion 3: Transmitter-receiver configuration of 3-D seafloor survey with grid layout.

Details of the transform method for enforcing upper and lower

bounding constraints are as follows. Consider the first transforma-

tion where

mk =
(

bk − ak

2

)
tanh(xk) +

(
bk + ak

2

)
; −∞ < xk < ∞.

(11)

Here, x k is the representation of the model component in the trans-

form space, and mk = σ k . Further, the transformed parameter is

related to the original model parameter by the expression

xk = tanh−1

(
2mk − bk − ak

bk − ak

)
; ak < mk < bk . (12)

Differentiating eq. (11) with respect to x k , utilizing eq. (12),

yields

∂mk

∂xk
=

(
bk − ak

2

)
sech2

[
tanh−1

(
2mk − bk − ak

bk − ak

)]
. (13)
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Figure 10. Inversion 3: Error functional �, according to eq. (1), of synthetic multiprofile data inversion.

Figure 11. Inversion 3: Final model solution.

The hyperbolic secant function in eq. (13) is always positive and

bounded and when squared is similar to a normal Gaussian distri-

bution. It achieves its maximum value of (bk − ak)/2 when mk =
(bk + ak)/2.

For the second option of logarithmic parameters one has for the

equivalent of eqs (11)–(13)

mk = ak + bk exp(xk)

1 + exp(xk)
; −∞ < xk < ∞. (14)

Table 3. Inversion 4: endpoint positions (x, y, z) of transmitter dipole in

metres for imaging study with source signature correction.

True (displaced) positions Assumed positions

Endpoint 1 Endpoint 2 Endpoint 1 Endpoint 2

−3100,0,0 −2900,−50,−50 −3100,0,0 −2900,0,0

−2100,0,−30 −1900,−20,0 −2100,0,0 −1900,0,0

−1100,−100,0 −900,−100,0 −1100,0,0 −900,0,0

0,0,0 200,0,0 −100,0,0 100,0,0

900,100,0 1100,0,−60 900,0,0 1100,0,0

1900,0,0 2000,0,−20 1900,0,0 2100,0,0

2900,−50,−20 3100,30,−70 2900,0,0 3100,0,0

xk = log(mk − ak) − log(bk − mk); ak < mk < bk . (15)

∂mk

∂xk
= (bk − ak) exp(xk)

[1 + exp(xk)]2
(16)

The graphs in Fig. 2 exemplify both transformation types. One can

observe the linear behaviour of both transformation functions when

the unbounded parameter has values in the vicinity of zero.

Using eq. (13) or (16), it is a simple matter to recast the cost func-

tional gradient in terms of the transformed variable, where compo-

nent wise we have

∂�

∂xk
= ∂�

∂mk

∂mk

∂xk
(17)

Another advantage of this type of transformation is that it may pro-

duce sharper image rendering if tight bounds are selected from a
priori information, as will be demonstrated in a synthetic example

below. However, if the bounds are too restrictive, then it is possible

that unacceptable data fits will result. With the transformed expres-

sion for the gradient in eq. (17), one can apply the NLCG algorithm

directly to the transformed problem, which implicitly enforces the

bound constraints. It is also understood that the regularization op-

erator now applies directly to the transformed unknowns, x k(k =
1, . . . , m), in the minimization procedure.
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Figure 12. Inversion 4: Error functional � for data inversion without (black) and with (red) source signature correction factor.

Figure 13. Inversion 4: Final model solution for inversion of data set with distorted transmitter endpoint positions. Upper/lower figures are created from

inversions without/with source signature correction factor as an additional inversion parameter.

5 S O U RC E S I G N AT U R E C O R R E C T I O N

In an inversion scenario with real field data, it is likely that data

distortions due to systematic measurement errors vary with the

transmitter’s frequency. Moreover, each distinct source may be af-

fected differently by positioning errors or local inhomogeneities in

its vicinity that are not accounted for in a starting model. In time-

domain forward modelling, such transmitter-characteristic data
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Figure 14. Inversion 5: Error functional � for inversion of distorted data without SSC factor and PC activated (black). Red, green, and blue curves show results

when PC, SSC and both PC and SSC are active, respectively.

distortions can be taken into account by convolution of the mod-

elling time curve with the Earth’s impulse response measured nearby

the transmitter. In the frequency domain, this translates to multipli-

cation of the right-hand side of eq. (4) by a complex-valued scaling

factor s,

KE = sS. (18)

Following the findings of Pratt (1999) for seismic waveform in-

version, we found that it may be beneficial to assign an unknown

complex scaling factor to each CSEM source, thus taking into ac-

count data distortions in the form of both amplitude and phase shifts.

In an inversion framework, this is realized by augmenting the inver-

sion parameters with a set of scaling factors, where one factor can

be assigned to each distinct source or to multiple sources. Hence,

one solves a source signature estimation problem together with the

imaging problem by also minimizing the data part of eq. (1) with

respect to s, where s is embedded within dp, leading to

s = doT dp∗

dpT dp∗ . (19)

In practice, s is computed after each model update during an inver-

sion iteration and applied to the modelling data dp afterwards.

An alternative way of addressing data distortions within an in-

version framework would be the direct recovery via additional un-

knowns representing transmitter characteristics. This leads to the

need of solving a problem that occurs in optimal experimental de-

sign. Generally, optimal experimental design aims at identifying

experimental conditions, including sampling schemes, that deliver

measurement data which are most sensitive to unknown param-

eters. Applying this concept to data distortions due to erroneous

transmitter characteristics, one would first have to identify the types

of transmitter characteristics that are in question. Compared to the

simplicity of the method proposed here, such a scheme may become

much more complicated, and thus shall not be investigated further

within this work. As demonstrated below, the source signature cor-

rection may be helpful in certain scenarios. However, it shall be

emphasized that a careful data pre-processing remains essential for

optimal imaging results.

6 E X P L O I TAT I O N O F S O L U T I O N

P A R A L L E L I S M

In a real industrial-sized data application, up to hundreds to thou-

sands of transmitters might have to be employed, in order to image

the subsurface at a sufficient level of spatial resolution and detail for

mapping reservoirs (Carazzone et al. 2005). This can lead to tens

of thousands of solutions to the forward modelling problem for a

single imaging experiment. Hence, the computational demands for

solving the 3-D inverse problem are enormous and non-trivial. To

cope with this problem, our algorithm utilizes two levels of paral-

lelization, one over the modelling domain, and the other over the

data volume. All processor communication is carried out using the

Message Passing Interface (MPI) software library.

6.1 Model decomposition

In solving the forward problem on a distributed environment, we

first split up the FD modelling domain, not the matrix, into a

Cartesian topology. The details of this scheme are outlined by

Alumbaugh et al. (1996). Thus a forward modelling problem is

solved amongst a number of N xyz = n x × n y × nz processors. As

the linear system is relaxed, which involves matrix–vector products

on each of the N xyz processors, values of the solution vector at the

current Krylov iteration, that are not stored on the processor, must

be passed by neighbouring processors to complete the product. In

addition to this message passing between neighbouring processors,

several global communications are carried out to complete the dot

products needed for the Krylov relaxation iterations. The solution

time’s rate of decrease using this kind of parallelization flattens with

increasing N xyz, since the overhead due to message passing becomes

more and more dominating.

6.2 Data decomposition

To avoid a message passing overhead, a second level of paralleliza-

tion is realized by distributing the data, that is, the transmitters
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Figure 15. Inversion 5: Data fits exemplified for the source centred at x = 0 m of the survey configuration shown in Fig. 3. The excitation frequency is f =
0.25 Hz. The inverted data is given by the black symbols. Data computed from the inversion result are shown for the case without using SSC (blue) and for the

case using both SSC and PC (red).

of a data set, over groups of processors. With a number N data of

such processor or data groups, one has thus a total number of tasks

N total = N xyz × N data. This allows to keep a balanced ratio between

N xyz and the size of the forward problem, which is dictated by the

size of its corresponding FD mesh �S . At the same time, an arbi-

trarily large number of CPUs can be employed, as the number of

data groups, N data, can be increased linearly with the total number

of transmitters employed in the imaging experiment.

One is interested in achieving maximum load balancing among

the processor groups assigned to each data group, because global

communication to compute dot products needs to be done several

times per inversion iteration. Consider a set of transmitters where

source–receiver configurations and source excitation frequencies

vary. First, optimized FD meshes for this set may vary considerably

in size, that is, the number of grid nodes. Second, convergence of

the Krylov solutions are prone to deteriorate with high model con-

ductivity contrasts and, unless special pre-conditioning techniques

are used, low excitation frequencies. Hence, bottlenecks may arise

from large Krylov convergence differences between data groups. To

achieve good load balancing, the transmitters are distributed among

the data groups such that each group has a similar workload in terms

of Krylov convergences. These can be estimated in advance from a

trial inversion iteration. However, it shall be noted that convergence

characteristics are subject to changes during later stages of an inver-

sion, owing to changing model properties. In this work, all grid sizes

are similar for the shown examples. Thus, we make the workload

distribution dependable only on the transmitter frequencies, while

N xyz is kept constant for each data group.

The data decomposition is highly parallel. The main computa-

tional burden occurs with the forward FD solves. We have achieved

nearly perfect scaling with this scheme. Provided sufficient compu-

tational capacity, it allows for realistic data sizes and 3-D imaging
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Figure 16. Inversion 5: (a) The inverted data set was created from a seabed model including a conductive upper layer of 200 m thickness with a randomly

distributed conductivity between 4 and 10 S m−1. (b) Inversion 5a: No pre-conditioner (PC) and no source signature correction (SSC) enabled. (c) Inversion

5c: Without PC, but SSC activated. (d) Inversion 5d: With both PC and SSC enabled, showing a strongly enhanced image at depth. Shown are both xz and yz
sections.

volumes to be analysed on time scales acceptable to the exploration

process.

7 S Y N T H E T I C M A R I N E C S E M S U RV E Y

E X A M P L E S

Synthetic inversion examples using data from a simulated marine

environment are presented. The model consists of a resistive reser-

voir (σ = 0.02 S m−1) of size 3 × 3 × 0.3 km along the x, y and

z coordinates, respectively. The target is embedded into a homoge-

neous and conductive background (σ = 1.4 S m−1) and its upper

boundary lies at a depth of z = 1200 m below the seafloor (z =
0 m). Inversion results of different transmitter-receiver configu-

rations will be shown below. Synthetic electric field data for the

frequencies 0.25, 0.75 and 1.25 Hz were generated. Normally dis-

tributive Gaussian noise was added to the data, based upon three

percent of the measurement amplitude. In addition, any data below
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Figure 17. Layout of the survey over the Troll West Gas Province. (a) Ver-

tical section (xz). (b) Horizontal section (xy). (c) Illustration of the model

subdomains covered by the simulation grids assigned to sources R1 and R24

for both frequencies f 1 and f 2.

Table 4. List of model and simulation grids for TWGP data inversion.

Grid Number of cells �x �y �z

�M 125 × 41 × 59 250 250 100

�min
x /�max

x �min
y /�max

y �min
z /�max

z f (Hz)

�1
S 85 × 41 × 85 125/250 250/250 25/200 0.25 (f 1)

�2
S 110 × 43 × 85 75/125 125/250 25/200 0.75 (f 2)

an assumed noise floor of 1 × 10−13 V m−1 were discarded from the

analysis.

For this scenario, we design a rather conservative model grid

�M with a uniform node spacing of � = 75 m and a size of M =
134 × 134 × 134 cells. This spacing fulfils a typical spatial sampling

requirement of 5 grid nodes per skin depth δ, where

δ ≈ 503

√
1

σb f
(20)

is estimated using the seafloor background conductivity (σ b =
1.4 S m−1) and the highest employed frequency, f 3 = 1.25 Hz.

The inversion domain �m covers 90 per cent of the model space

below the seafloor. Because the CSEM data are generated from the

same forward solution used in the inversion, we have taken steps to

insure that the simulated data have some degree of independence

from �m . Specifically, a finer mesh, �0
M , with a node spacing � =

50 m, and thus a size of M = 200 × 200 × 200 cells, was used

as FD simulation grid for data generation. The three simulation

grids �S employed in the inversions each have a uniform grid node

spacing, which is adapted to the source frequency using eq. (20). For

each grid, the grid spacing � is chosen to meet a spatial sampling

requirement of 4 nodes per skin depth δ. Table 1 summarizes the

details of all grids. The main purpose of the synthetic data inversions

presented here is a feasibility study for adaptive simulation meshes.

Therefore, we choose a rather ideal starting model with the true

background conductivity for all inversions.

In the following, each imaging experiment shall be numbered

consecutively. Refer to Table 2 for computational requirements of

each inversion.

7.1 Inversion 1: Single profile, three frequencies

The configuration of the first synthetic imaging study, referred to

as Inversion 1, is shown in Fig. 3. A single profile with seven in-

line horizontal electric dipole transmitters runs across the target’s

centre, where each source has a length of 200 m and is located at

z = 0 m. Note that we have applied the reciprocity principle to the

synthetic data. The positions of the real CSEM transmitter along

the sail line become the computational receiver positions, and the

real CSEM detectors on the seafloor become computational sources.

Therefore, sources and receivers refer to the computational sources

and receivers as they are defined in the simulations. The electric

point dipole receivers are located at z = −50 m and are separated by

a distance of 100 m. Only inline electric fields are inverted, which

are the fields parallel to the transmitter orientation. Each source op-

erates at the three frequencies f 1 = 0.25 Hz, f 2 = 0.75 Hz and

f 3 = 1.25 Hz. Hence, computation of the predicted data at each in-

version iteration effectively requires 21 forward solutions. We refer

to the inversions using the coarser simulation meshes as coarse-grid

inversions. For a comparison, a reference inversion result (number

1a in Table 2) was also produced, where �i
S = �M for all three

frequencies f i . Further, a logarithmic type of parameter transfor-

mation according to eq. (15) with constant lower/upper bounds of

0.005/1.5 S m−1 is employed.

For both inversions, the total error functional, computed from

eq. (1), is depicted in Fig. 4. Data fits are exemplified for the fre-

quency f 1 = 0.25 Hz in Fig. 5. The reference and coarse-grid inver-

sions needed 87 and 97 iterations, respectively, to reach a final data

misfit of one. Refer to Table 2 (Inversions 1a,b) for details about the

computational resources used for these results. While the coarser

meshes enable a computational speed-up factor of 5.5, the final im-

age shows no significant deterioration, compared to the reference

inversion, as can be seen in Fig. 6.
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Figure 18. Error functional � of the TWGP inversion.

7.2 Inversion 2: Single profile, one frequency

In a typical imaging experiment, one might want to start inverting

a subset of the data in order to refine an image in a step-by-step

fashion. In the next study (Inversion 2a,b), we demonstrate that for

the kind of target chosen here, the data of the lowest frequency,

f 1 = 0.25 Hz (seven sources), provides sufficient information for

resolution of the conductor at depth. Error functional and final model

are shown in Figs 7 and 8. This inversion produces an image very

similar to the previous one, however with a slightly less pronounced

resistor.

Because both inversions 1 and 2 only employ a single sail line,

one observes limited lateral sensitivity perpendicular to the sail line.

While the resolution along the profile is satisfactory for this target,

the lateral sensitivity to the target is limited to ±1 km along the

y direction. The bow-shaped lateral image (‘migration smile’) also

results from a lack of resolution. Obviously, the lateral geometry

of the target that can be recovered will be highly dependent on

the survey coverage. Hence, high resolution 3-D imaging of marine

CSEM measurements will require spatially exhaustive data volumes

such as those generated by multiple sail lines over the target.

7.3 Inversion 3: Grid layout, one frequency

A third imaging study (Inversion 3) uses data from 10 profiles in

a grid layout shown in Fig. 9. Here, the profiles contain altogether

18 source locations, where each location has two horizontal source

polarizations. In contrast to the previous inversions, the receiver

dipoles have two endpoints and a length of 100 m. We invert only

the data of the frequency f 1 = 0.25 Hz. In total, the data set contains

36 effective sources and 14 442 data points. A total number of 120

inversion iterations are required to achieve the target misfit of 1.0

(Fig. 10). In a preliminary study, we observed very similar results be-

tween reference and coarse-grid inversions for such a profile layout.

Here, only the coarse-grid result, using grid �1
S , is shown in Fig. 11.

The generally sharp image indicates a highly improved lateral res-

olution, when comparing with the single-profile results. Instead of

running a (fine-grid) reference inversion for the same number of

iterations, only the preliminary stage of the inversion was repeated

using �S = �M ; thereby we can estimate a computational speed-up

factor of approximately 40 for this example.

For marine CSEM imaging experiments, thus far, the lower and

upper bounding constraints promise to be very useful in alleviat-

ing conductivity overshoots (Gibbs phenomenon) near structural

boundaries. We have also made the experience that, in contrast to un-

bounded parameters, both types of parametrizations are more pow-

erful in suppressing near-surface image artefacts due to statics and

positioning errors at the detectors. Though the shown synthetic stud-

ies demonstrate that acceptable models can be recovered, solution

non-uniqueness remains a formidable problem. While employing

both upper and lower bounding constraints can be highly benefi-

cial, a convergence failure may result from too restrictive bounds.

It is therefore, imperative that prior information be incorporated in

the imaging process to restrict the class of solutions to geologically

meaningful ones.

7.4 Inversion 4: SSC for positioning errors

For the following inversion study, we simulate a case where the

measured positions of the real detectors on the seafloor would have

errors. The source signature correction (SSC) factor shall be em-

ployed to alleviate the negative effects of positioning errors. We use

the same data-generating model as in the previous examples, and

a source–receiver configuration similar to that of inversion 2, with

seven sources and a transmitter frequency of f 1 = 0.25 Hz. For

creation of the distorted input data, the endpoint positions of the

computational sources are modified according to Table 3. The two

left columns list the true endpoints used for the synthetic data gen-

eration, and the two right columns are the (erroneous) positions as

assumed for the inverted data. Two inversions were carried out, one

without activating the source signature factor, another one with a

separate factor s for each of the seven sources. Figs 12 and 13 show

the error functional and the resulting images for both inversions.

Comparing the results, it can be observed that there is significant

improvement achieved by enabling the source scaling. While both

model images exhibit the resisitive target, additional artefacts, with
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Figure 19. Data fits for TWGP inversion. Shown are observed and reproduced electric fields along the receiver profile for each source R1–R24 using the

transmitter frequency f 1 = 0.25 Hz. The red and black curves are the real parts of the observed and reproduced electric field, respectively. The blue and purple

curves are the corresponding imaginary parts.

the largest one nearly as large in size as the target, result from the

inversion without scaling. The occurrence of artefacts is strongly

suppressed when enabling the scaling factor. However, the conver-

gence of the error functional towards a value of 27 indicates that the

relatively large distortion imposed on the data can only be mitigated

to a limited degree by the complex scaling factor.

7.5 Inversion 5: SSC for highly conductive overburden

In the next example, it is demonstrated for a different kind of data

distortion, how the source signature correction factor may improve

the inversion result. To generate strong data distortions, a layer with

randomly distributed conductivities between 4 and 10 S m−1 was
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Figure 20. Data fits for TWGP inversion. Shown are observed and reproduced electric fields (real and imaginary parts) for each source R1–R24 using the

transmitter frequency f 2 = 0.75 Hz.

added to the true model used for our synthetic data. The layer

starts below the sea bottom and has a thickness of 200 m. As a

starting model, a homogeneous background is assumed, again with

the true conductivity. Here, we use the same survey layout, number

of sources and frequencies, and (coarse) grids as for Inversion 1b.

To see the effect of the SSC, two inversions (numbered 5a,b) with-

out its activation are first carried out. The difference between these

two inversions is that the second one uses a solution pre-conditioner

(PC). Key to this enhanced solution approach is an adjoint method

that allows for an economical approximation of the Hessian used as

the pre-conditioner M for the NLCG algorithm (see Section 2.1).

The matrix operation M−1
i in the algorithm is a PC, that changes the

conjugate search direction ui such that it steers more towards the

Newton direction. The effect of using the PC is that it scales

the search direction, causing the activation of deeper regions in

the model, that is, the inversion tends to put more weight on the
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Figure 21. Final imaging result of TWGP inversion. R1–R24 mark the source positions projected to the xz-plane. The white lines in the upper figure represent

interpreted seismic reflection horizons (Hoversten et al. 2006).

updates of the corresponding model components σ k , compared to

more shallow model regions. For more details about this type of PC

the reader is referred to the work of Newman & Boggs (2004).

In addition to the two inversions without SSC, two more (num-

bered 5c,d) were carried out. The third one has the SSC activated,

and the fourth one has both the SSC and PC activated. The error

functional curves of all four attempts are shown in Fig. 14. Only

the two inversions with SSC achieve a significant misfit decrease,

where the pre-conditioned one reaches a final misfit which is by a

factor of 1.3 smaller. Fig. 15 exemplifies the improved data fits for

the source positioned at x = 0 m (see Fig. 3) and the excitation fre-

quency f 1 = 0.25 Hz. The greatly improved data fits using the SSC

also reflects in the final images shown in Fig. 16. The upper figure

(a) shows the true model with the upper conductive seabed. Below

(b) is the result obtained without using the SSC, where both the

non-preconditioned and pre-conditioned inversions produce similar

images. No resistive target appears in these images. Using the scal-

ing factor (c), the resistor appears very faintly a few hundred metres

above the true target. A strong yet distorted image of the reservoir

is obtained when using both SSC and PC (d, two bottom graphs).

Although great solution improvement is achieved by using the

SSC in a pre-conditioned inversion, one would have to exercise cau-

tion when interpreting the image. First, it has to be repeated that the

strong data distortions simulated here can only be represented partly

by the source signature. Second, the activation of deeper model re-

gions by the PC may be stronger than desired. We note that the shown

results using the SSC is a rather exploratory study, demonstrating

its potential of solution improvement. Further studies with different

types of systematic data errors, which are typical in CSEM surveys,

are to be carried out to gain further understanding about usage of

EM source signatures in inversions.

8 F I E L D DATA E X A M P L E

We present a field example using seabed logging data from the Troll

West Gas Province (TWGP). This hydrocarbon reservoir is part

of the large Troll Field complex, located offshore Norway. Details

about the exploration site are given by Gray (1987), and the CSEM

survey is outlined in detail by Johansen et al. (2005). Here, we give

a summary about both the survey and the reservoir characteristics.

8.1 Survey and target

The survey layout, illustrated in Fig. 17 (a and b), comprises 24

CSEM detectors on a single profile, covering a profile length of

approximately 12 km. The transmitter antenna is a horizontal elec-

tric dipole of length 230 m. It was towed along an overflight pro-

file, at an average of 25 m above the detectors, covering a profile

length of more than 25 km across TWGP. Within the Troll Field

complex, the sea water depth varies between 300 and 360 m. The

reservoir is embedded within Jurassic sandstones, where water bear-

ing sands and overburden sediments have conductivities between

0.5 and 2 S m−1. Resisitivy measurements in an exploration well

showed an average of 200–500 � m within the hydrocarbon bear-

ing layer, and a maximum reservoir thickness of 160 m. The upper
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Figure 22. Comparison of inversion result with a simplified geological section across TWGP by Johansen et al. (2005). The geological section also includes

the resistivity data from exploration well 31/2-1, which is located off the profile.

reservoir boundary’s depth is about 1400 m below sea level (z =
0 m), with a horizontal extension of approximately 8 km along the

survey profile.

In the following, the reciprocity principle is used again by chang-

ing the tow line of the real CSEM transmitter to the computational

receiver profile, and the real detector positions to the computational

sources. The inverted data set includes a total of 48 computational

sources, operating at the two frequencies f 1 = 0.25 Hz and f 2 =
0.75 Hz, with 24 sources per frequency. The measurements consist

of inline, that is, parallel to the source orientation, electric fields,

these are 1192 data points in total. The survey also included mea-

surements at a transmitter frequency of 1.25 Hz. The noise content

of the data increases with the transmitter frequency. Inverting only

the data belonging to the frequency f 1, we were able to reach a final

misfit of � = 1. Adding data of the higher frequencies, the misfit

converges towards a higher value. Compared to the two lower fre-

quencies, the noise content of the data belonging to the frequency

1.25 Hz is relatively high. Hence, we decided to exclude this data

from the inverted data set.

8.2 Inversion setup and result

In a preliminary modelling study, similar to the one outlined by

Johansen et al. (2005), we found that bathymetry effects are negli-

gible compared to the relatively large reservoir response. The max-

imum vertical difference between the source positions is 4 m over

a source profile of more than 12 km. Therefore, our starting model

contains a flat seabed with an averaged water depth of 323 m. All

sources are placed on the seabed at z = 323 m, while the original

receiver positions with respect to the sources are kept. We use a

starting model with a homogeneous background of 0.3 S m−1 below

the sea bottom. No further a priori information is utilized during

the inversion. Uniform model smoothing is applied within the whole

inversion domain, using a regularization parameter of λ = 0.1. Be-

cause of the large target size, no bathymetry, and a rather moderate

background conductivity variation within the model, a rather coarse

modelling mesh can be used.

Again, the design of a proper modelling mesh and simulation

meshes for both employed frequencies is based on skin depth esti-

mations, as outlined in Section 7. All mesh details are summarized in

Table 4. While the simulation grid stretching, with the minimum and

maximum cell sizes also given in Table 4, is the same for all sources

of the same frequency, a separate simulation mesh is assigned to

each source in practice. Each simulation grid’s node positions can

thus be adapted to the source and receiver positions and their cor-

responding offsets. This is illustrated in Fig. 17(c) for the sources

R1/R24 located on the left/right end of the source profile. The simu-

lation grids assigned to these sources cover a different subset of the

modelling mesh. Because of different skin depth criteria, the grids

�2
S ( f 2 = 0.75 Hz) cover a slightly smaller volume than �1

S ( f 1 =
0.25 Hz).

We stopped the inversion (given number 6 in Table 2) after 172

iterations, when no more significant progress was made in the misfit

decrease, shown in Fig. 18. The final data fits for both the real and

imaginary parts of the electric field are shown in Fig. 19 for the

frequency f 1 = 0.25 Hz and in Fig. 20 for f 2 = 0.75 Hz. Fig. 21

shows both xz and yz sections of the final image. The inversion
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Table 5. Inversion 5: Comparison of the separate data misfits for all stations

produced by the final TWGP solution and a non-reservoir model. For the

non-reservoir model, all model cells within the reservoir region with σ ≤
0.01 S m−1 were set to σ = 0.3 S m−1.

f 1 = 0.25 Hz f 2 = 0.75 Hz

Station Reservoir No reservoir Reservoir No reservoir

R1 2.5 6.6 4.7 35.5

R2 2.3 3.2 5.1 12.0

R3 5.8 3.9 5.1 5.1

R4 1.9 71.4 5.4 25.7

R5 3.6 6.3 6.5 43.8

R6 2.5 16.7 5.1 28.9

R7 2.0 116.7 5.8 24.7

R8 6.5 28.2 7.1 45.9

R9 2.0 15.3 5.6 34.1

R10 8.2 18.1 15.3 40.3

R11 4.2 86.3 13.1 39.7

R12 4.3 15.1 14.1 42.2

R13 1.9 13.3 7.5 52.4

R14 2.1 13.6 8.2 56.0

R15 2.3 17.4 3.7 56.7

R16 2.5 21.4 5.3 61.7

R17 1.9 12.5 8.6 67.1

R18 3.4 14.4 20.6 56.6

R19 1.9 13.1 6.0 50.9

R20 4.4 13.0 4.7 43.0

R21 1.5 12.6 6.4 46.9

R22 1.9 16.8 5.1 41.6

R23 2.3 13.3 4.4 57.2

R24 3.4 13.3 4.8 51.2

reaches a satisfactory data fit, produced from a model with a clear

image of the resistive target. It was further found that inverting the

data with the SSC activated does not improve the image in terms of

delineating the reservoir zone. Hence, we consider the data quality

as high enough.

A common way of incorporating prior model information would

be the removal of the smoothing constraints, given by the sec-

ond term in eq. (1), along surfaces identified as seismic horizons

(Hoversten et al. 2006). This is based on the assumption that sharp

changes in the acoustic impedance across reflection horizons also

constitute layer boundaries with contrasting electrical conductivi-

ties. Although we did not incorporate such sharp boundaries into

the smoothing constraints, both the depth and location of the reser-

voir is well within the boundaries defined by two seismic horizons,

which were available as prior information, shown by the white lines

in the xz-section of Fig. 21. Similar to the observations in the model

result of inversions 1 and 2, the lateral resolution is limited along the

single survey profile. However, the yz-section of the image also sup-

ports the large reservoir widths of 3.5-5 km assumed by Johansen

et al. (2005).

8.3 Inversion solution analysis

It follows a comparison of the inversion result with a simplified

geological model by Johansen et al. (2005), shown in Fig. 22. The

geological section in the upper figure was based on 3-D FD for-

ward modelling, and the incorporation of seismic reflection data

and borehole EM measurements. Due to the diffusive nature of the

EM fields, the CSEM method cannot clearly delineate the sedimen-

tary layer boundaries. However, a resistive zone in the region z =
500–750 m, embedded between two conductive layers, is indicated

by our result. Below the reservoir, it is assumed that the high poros-

ity sands are filled with brine. The presence of such a brine layer is

clearly indicated in the model by increased conductivities starting

below a depth of 1700 m (Fig. 21). The image’s background struc-

ture has also been indicated by other different inversion approaches

(Hoversten et al. 2006). The image further shows conductivity vari-

ations in the shallow zone right below the seabed. From our ex-

perience with field data inversions, we assume that such variations

arise when the inversion method attempts to compensate for both

positioning errors in the data and/or a local variability in the seabed

conductivity, which is not captured by the model discretization, in-

cluding bathymetry effects. However, in this case the shallow vari-

ations are no major problem, because the primary purpose of the

imaging experiment is the detectability of the resistive reservoir.

Comparing the geological section of Fig. 22 with the image shows

a good match for the horizontal reservoir position. The reservoir top

appears around z = 1300 m below sea level, while the well log data

indicates a depth of z = 1400 m. Note, however, that the well is a

few kilometres away from the profile. In view of the fact that no

sharp-boundary horizons were enforced in the inversion, the image

shows a remarkably similar reservoir shape. It shall also be noted

that the image contains relatively strong resistivity changes along

the profile direction beyond the reservoir flanks. Although rather

speculative, these patters may be attributed to the vertical fault lines

which were identified from the seismic information. These faults

are indicated around the profile positions x = 3, 11, 12, 15 and 16

km in Fig. 22.

To investigate how relevant the reservoir is for fitting the data, a

non-reservoir model was created from the final inversion result. The

non-reservoir model has the background conductivity structure of

the image, yet with the reservoir masked. In practice, all model cell

conductivities σ ≤ 0.01 S m−1 within the volume defined by x = 4

to 12 km, y = −1 to −1 km and z = 1100 to 1400 m are set to σ =
0.3 S m−1 (background conductivity of the starting model). Table 5

shows the separate data parts of the error functional �, given by

the first term on the right-hand side of eq. (1). One data set is given

by the source at one of the positions R1–R24, the source frequency,

and the data points assigned to this source. Averaged over all 48

data sets, the data misfit increases by a factor of 8 when masking the

reservoir. The total misfit, calculated by summing the misfit over all

1192 data points, is 33.5, compared to 5.2 for the reservoir model.

Fig. 23 further exemplifies this difference. Shown are both real and

imaginary field components for the data assigned to the sources

R4,f 1 and R15,f 2.

9 C O N C L U S I O N S

We have made significant progress in further reducing the computa-

tionally high demands of large-scale CSEM inverse problems. Being

able to separate the simulation space from the model space, in terms

of FD grid design, opens a range of possibilities. As demonstrated, a

simulation mesh can be adapted to the source excitation frequency,

source–receiver offsets, and its corresponding largest distances, and

thus be optimized computationally. Depending on the location of a

source in the model and its coverage of the inversion domain, given

by the source–receiver geometry, the simulation mesh position can

be optimized individually for each different source. As shown in the

field data example, one can thus let the simulation grids assigned to

a survey profile ‘slide’ along the profile, where they only have the

minimum required grid sizes. Such a capability is essential for treat-

ment of industrial field data sets, where survey profiles cover areas

which may easily exceed sizes of 100 km2. The computation times
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Figure 23. Data fits produced from TWGP inversion (blue curves) in comparison with a non-reservoir model (black curves), exemplified for the source positions

R4 and R15 and both frequencies f 1 = 0.25 Hz and f 2 = 0.75 Hz.

achieved with the grid separation scheme show that 3-D CSEM in-

version is now feasible within reasonable times, using mid-sized,

parallel cluster computers.

The efficient usage of computer resources by combining two dif-

ferent levels of parallelization is further essential for treatment of

data sets of arbitrarily large sizes.

Both the synthetic results and field data inversion examples show

relatively sharp images of the known resistive targets. Here, us-

ing proper parameter constraints has proven to be extremely valu-

able in avoiding conductivity overshoots, which are prone to hap-

pen in unbounded inversions, particularly in the case of noisy

data.

Including the source signature estimation, as shown in the syn-

thetic studies, indicates significant potential for correcting for

unwanted data distortions directly within the imaging process.

Although a potentially very useful additional tool, it has to be empha-

sized that a careful data pre-processing still remains very important

to ensure maximum data integrity.
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