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ABSTRACT: Globally, 200 million people drink groundwater
contaminated with fluoride concentrations exceeding the
World Health Organization’s recommended level (WHO-
MCL = 1.5 mg F−/L). This study investigates the use of
minimally processed (dried/milled) bauxite ore as an
inexpensive adsorbent for remediating fluoride-contaminated
groundwater in resource-constrained areas. Adsorption experi-
ments in synthetic groundwater using bauxites from Guinea,
Ghana, U.S., and India as single-use batch dispersive media
demonstrated that doses of ∼10−23 g/L could effectively
remediate 10 mg F−/L. To elucidate factors governing fluoride
removal, bauxites were characterized using X-ray fluorescence,
X-ray diffraction, gas-sorption analysis, and adsorption isotherms/envelopes. All ores contained gibbsite, had comparable surface
areas (∼14−17 m2/g), had similar intrinsic affinities and capacities for fluoride, and did not leach harmful ions into product
water. Fluoride uptake on bauxite -primarily through ion-exchange- was strongly pH-dependent, with highest removal occurring
at pH 5.0−6.0. Dissolution of CaCO3, present in trace amounts in India bauxite, significantly hindered fluoride removal by
increasing solution pH. We also showed that fluoride remediation with the best-performing Guinea bauxite was ∼23−33 times
less expensive than with activated alumina. Overall, our results suggest that bauxite could be an affordable fluoride-remediation
adsorbent with the potential to improve access to drinking water for millions living in developing countries.

1. INTRODUCTION

Over 200 million people worldwide drink groundwater
containing naturally occurring1 fluoride concentrations2

surpassing the World Health Organization’s maximum
recommended contaminant level (WHO-MCL) of 1.5 mg
F−/L.3 Although fluoride at low concentrations (<1 mg F−/L)
is often intentionally added to drinking water supplies to
prevent dental caries,4 exposure to excessive fluoride concen-
trations can cause lower IQ,5 mottling of tooth enamel (dental
fluorosis), irreversible bone deformities in children (skeletal
fluorosis), and anemia attributed to poor nutrient absorption.6

Fluoride-affected areas include arid regions of India, China, the
East African Rift Valley, the Middle East, northern Mexico, and
central Argentina.6,7

Many defluoridation technologies have proven to be effective
in the lab, but most are neither sustainable nor effective in
remote rural regions of developing countries because they are
cost-prohibitive and dependent on intensive skilled labor for
maintenance (e.g., Nalgonda technique,7 reverse osmosis,
activated alumina, and aluminum electrocoagulation),8 difficult
to source and culturally inappropriate in India (e.g., bone
char),8 or unreliable and challenging to scale up in rural
communities (e.g., rainwater harvesting).9 Activated alumina
(AA) filters are widely used due to their effectiveness and
relative affordability for the upper middle class.10 AA is

produced by first extracting aluminum oxides from bauxite, a
composite ore that also contains oxides of iron, silicon, and
titanium as well as other trace minerals. Industrial refining
methods such as the Bayer process, aiming to concentrate the
Al fraction of bauxite and eliminate impurities, utilize
pressurized sodium hydroxide and temperatures exceeding
1000 °C and are therefore extremely resource-intensive in
terms of capital and operating costs, energy, and greenhouse
gas emissions.11 Per tonne, alumina ($300/tonne) costs
approximately 10× more than raw bauxite ore ($30/tonne),
due to expenses associated with processing and purifying the
bauxite.12 Alumina (Al2O3) is then thermally activated to make
the commonly used AA filter media ($1500/tonne),13 a highly
efficient fluoride adsorbent14,15 with a final material cost 50×
higher than raw bauxite ore. Fluoride also has a strong
adsorption affinity for gibbsite (Al(OH)3),

15−17 the primary
component of bauxite, AA’s parent ore. In addition, bauxite
deposits are present worldwide, including in countries with
fluoride-contaminated regions (e.g., India, Ghana, and China).
For instance, India has over 66 million people facing risk of
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developing fluorosis18 and it is also home to the fifth largest
bauxite deposit (3037 million tonnes).19 Hence, replacing AA
with mildly processed bauxite (e.g., dried/milled) ore has the
potential to create a fluoride removal method that is more (a)
effective at remediating contaminated groundwater in $/vol-
ume of water treated, (b) affordable to low-income households,
and (c) widely available in affected regions.
Although several studies have observed fluoride adsorption

on bauxite,20−28 existing literature does not rigorously
demonstrate that mildly processed bauxite can produce the
level of fluoride removal required to meet the WHO-MCL, nor
does it investigate the fluoride removal performance of bauxites
of diverse origins with significantly different chemical
compositions. The adsorption of numerous cationic (e.g.,
Cu2+, Pb2+, Co2+, Cd2+, Mn2+, Fe2+, Ca2+, Zn2+, Hg(OH)2,
UO2

2+, Th4+), and anionic (e.g., PO4
3−, AsO4

3−, SO4
2−,

MoO4
2−, SeO4

2−, CrO4
2−, H3BO3, H2SiO4

2−) species on
gibbsite has been reported,29 but very few studies have focused
on the adsorption of fluoride (F−) on pure gibbsite16 or on its
composite bauxite ore.27,23 More generally, the adsorption
behavior of composite mineral assemblages such as bauxite is
not well understood because published surface complexation
and spectroscopic studies have primarily focused on surface
interactions with pure mineral phases. Specifically, the effect on
fluoride removal of non-Al minerals present in bauxite (e.g.,
hematite, goethite, kaolinite, calcite, etc.), which could impact
adsorption through modifications in the adsorbent’s elemental
composition, surface area, and affinity for fluoride, has not been
investigated in prior literature. Thus, characterizing and
elucidating the performance of diversely sourced bauxite ores
with different compositions may allow for the design of an
effective and low-cost solution to remediate fluoride-contami-
nated groundwater.
Therefore, the objectives of this study are (1) to demonstrate

and compare fluoride removal performance of diversely sourced
bauxite ores used as dispersive batch media, (2) to elucidate
factors governing fluoride removal with mildly processed
bauxite ores, and (3) to conduct a rigorous, controlled, cost
comparison of treating fluoride-contaminated groundwater with
AA and bauxite. To meet these objectives, we conducted batch
fluoride adsorption experiments with four bauxite ores
originating from India, Guinea, Ghana, and the U.S. Except
for U.S. bauxite, which was convenient to obtain, the other
regions were selected because of the severity of their fluoride
contamination problem and their large share in global bauxite
production.19,30,31 Furthermore, molecular-level and macro-
scopic experimental techniques were used to characterize the
ores in terms of elemental and mineral composition, adsorption
affinity and capacity, surface area, and equilibrium suspension
pH. Our results elucidating factors influencing fluoride removal
efficiency strongly suggest that mildly processed bauxite ore is a
cost-competitive alternative to AA and consequently has the
potential to substantially improve access to safe water in
fluoride-affected low-income communities.

2. MATERIALS AND METHODS
2.1. Adsorbent Materials. Bauxite ores were received from

mines in India (Visakhapatnam, Telangana), Guinea (Boke),
Ghana (Western Region), and U.S. (Eufaula, Alabama). After
oven-drying raw bauxite at 100 °C for 24 h to remove moisture,
5 g of each sample was milled for 60 min in an agate milling jar
of a shaker ball mill (SPEX8000) to generate submicrometer-
sized powders, as confirmed by scanning electron microscopy

(SEM) and dynamic light scattering (Malvern Zetasizer Nano
ZSP). In a number of experiments, we used as-received AA
powder (0.58 ± 0.56 μm, Sigma-Aldrich, MO) with a
comparable particle size to that of the bauxite ores from
India, Guinea, Ghana, and U.S. (respectively 0.71 ± 0.10, 0.76
± 0.08, 0.55 ± 0.27, and 0.91 ± 0.84 μm). Images of each
bauxite ore (as-received, after milling, and with SEM) are
shown in Supporting Information (SI) Figure S1. The
zetapotentials of these bauxite ores and AA measured between
pH 2 and 12 in deionized (DI) water are reported in SI Figure
S2, along with points of zero charge (PZC).

2.2. Materials Characterization. Bulk elemental compo-
sition was measured by energy dispersive X-ray fluorescence
spectroscopy using the parameter-free Turboquant method
(Spectro Xepos ED-XRF), which does not account for light
elements such as C and N in the total mass. Bulk crystalline
mineral composition was determined from X-ray diffraction
(XRD) patterns obtained using a Bruker D8-Discover
diffractometer with a Co source (Co Kα = 1.79 Å) and a
Vantec-500 area detector. Multipoint Brunauer−Emmett−
Teller (BET) measurements were made using a Micromeritics
Tristar II 3020 to determine the specific surface area (SSA) of
the milled bauxite ores. Additional details regarding sample
preparation and data processing are provided in the SI.

2.3. Batch Adsorption Experiments. Standard batch
adsorption experiments were designed to determine the
respective effects of the solid:liquid ratio (referred to as
“dose” henceforth), initial fluoride concentration, pH, ionic
strength, and reaction time on fluoride removal with the 4
bauxite ores. Adsorbents were added to select electrolytes in 15
mL polypropylene centrifuge tubes at doses differing for each
experiment. An Analog Rotisserie Tube Rotator (Scilogex, MX-
RL-E) allowed maintenance of well-mixed suspensions during
the full duration of the batch adsorption experiments, which
were conducted for 24 h for consistency with other studies,15,32

and after confirming through kinetics studies that concen-
trations were independent of time after 3 h (SI Figure S4).
Upon completion of each adsorption experiment, a 5 mL
aliquot of the slurry was collected in a syringe and filtered using
0.2 μm filters before analysis. Filtered aliquots were then mixed
with equal volumes of Total Ionic Strength Adjustment Buffer
(TISABII) to complex aluminum and iron, and free-fluoride
(F−) was measured using a fluoride ion-selective electrode
(Mettler Toledo SevenMulti, perfectION). A Consort meter
(R3620) was used to measure pH. SI Table S1 provides a
detailed summary of experimental conditions. SI Table S2
provides the composition of real and synthetic groundwater
matrices used in batch experiments designed to be
representative of real treatment conditions (including ionic
strength, which is mostly unaffected by fluoride adsorption).
Binary-solute buffered electrolytes were used mainly in bauxite
characterization experiments and were not designed to be
representative of drinking water.
Experiments to determine the minimum bauxite dose (g/L)

to remove an initial fluoride concentration of 10 mg F−/L
down to below the WHO-MCL (1.5 mg F−/L) were conducted
in a synthetic Sri Lankan groundwater matrix (4.3 mM Ca2+,
7.5 mM Mg2+, 8.5 mM HCO3

−, 0.2 mM SO4
2−, 1.6 mM Si, and

0.6 mM NO3
− as N) derived from British Geologic Survey

(BGS)2 measurements to represent the average composition of
groundwater in fluoride-contaminated regions in South Asia (SI
Table S2). The pH was initially set to 6.0 ± 0.1 (near the pH of
minimum solubility of gibbsite) and was not kept constant
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during experiments (final pH values ranged between 6.3 and
7.5). Batch tests using incremental adsorbent doses allowed us
to narrow down the range of the minimum required dose,
which was determined by linear interpolation of three separate
doses yielding an equilibrium fluoride concentration that tightly
bracketed the target of 1.5 mg F−/L (SI Figure S3). Dissolved
aluminum (Al) and iron (Fe) concentrations were measured
using inductively coupled plasma optical emission spectroscopy
(ICP-OES, Varian 720 Series) upon bauxite’s equilibration with
a binary-solute matrix (5 mM HCO3

− + 35 mM NaCl + 10 mg
F−/L) for 3 h (SI Table S2). Additional studies described later
in the paper (e.g., ionic strength, kinetics, FTIR, and treatment
costs) were conducted using Guinea bauxite ore due to its high
fluoride removal performance.
Experiments to determine the adsorption isotherm of each

ore were conducted in 50 mM 2-(N-morpholino)-
ethanesulfonic acid (MES, to maintain the pH at 6.0 ± 0.2)
+ 5 mM HCO3

− (to introduce a natural source of buffering/
alkalinity) amended with 5, 10, 20, 40, 60, 80, and 100 mg/L of
NaF. Ionic strength was kept constant at 61 mM by adding
NaCl as necessary and a constant bauxite dose of 4 g/L (40 ±
0.1 mg/10 mL) was used in these experiments. Adsorption
isotherms were fitted against the Langmuir and Freundlich
models using ISOFIT (nonlinear regression). The intrinsic
fluoride adsorption capacity and affinity of each ore were then
determined using the best-fit model.
Experiments to determine the adsorption envelope of each

bauxite ore were conducted in 5 mM HCO3
− amended with the

following buffers: 50 mM NaCH3COO/CH3COOH (pH 4 and
5), 50 mM MES (pH 6), 14 mM Na2HPO4/NaH2PO4 (pH 7),

and 10 mM Na2B4O7/H3BO3 (pH 8). Ionic strength was kept
constant at 61 mM across experiments by adding NaCl as
necessary. A constant initial fluoride concentration of 10 mg
F−/L and a bauxite dose of 6 g/L (60 ± 0.1 mg/10 mL) were
used in these experiments.
Experiments to determine the effect of ionic strength on

fluoride removal were conducted with Guinea bauxite (dose: 10
g/L (100 ± 0.1 mg/10 mL)) in 5 mM HCO3

− + 10 mg F−/L
amended with increasing concentrations of NaCl (1, 10, 100
mM). The kinetics of fluoride removal were investigated in
synthetic Sri Lankan groundwater with AA and milled Guinea
bauxite (doses of 4 g/L (40 ± 0.1 mg/10 mL) and 10 g/L (100
± 0.1 mg/10 mL), respectively) by monitoring fluoride
concentrations after 1, 3, 5, 8, and 24 h (SI Table S2 and
Figure S4). All experiments were conducted in duplicate or
more.

2.4. Determination of Equilibrium pH. Suspensions of
each milled bauxite ore (dose: 1 g/L) were mixed in open glass
beakers containing 35 mM NaCl for 24 h and the final pH,
henceforth referred to as “equilibrium pH”, was measured. To
understand the observed differences in equilibrium pH between
the 4 bauxite ores, we conducted separate experiments with
higher doses (4 g/L) of bauxite and measured the dissolved
calcium and inorganic carbon (DIC) concentrations in the
filtrate (0.2 μm) after overnight mixing. Calcium was measured
using ion chromatography (IC, Metrohm Chromatagraph,
IonPac CS12 column) and dissolved inorganic carbon was
determined with a total carbon analyzer (Shimadzu TOC-
VCSH) as the difference between total carbon (TC, representing

Figure 1. Characterization of globally diverse bauxite ores in terms of (A) Minimum doses required to remediate 10 mg F−/L to below the WHO-
MCL (1.5 mg F−/L) in synthetic Sri Lankan groundwater; initial pH of 6.0, (B) Elemental composition as determined by X- Ray fluorescence, and
(C) Mineralogy as determined by X-ray diffraction patterns. Unlabeled peaks represent gibbsite. In panel A, we present averages from duplicate
experiments and error bars are the largest of the range from duplicate tests and measurement errors associated with the fluoride probe. In panel B, we
present the measurement errors associated with the ED-XRF analysis.
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inorganic and organic carbon) and non-purgeable organic
carbon (NPOC, representing nonvolatile organic carbon).
2.5. ATR-FTIR Spectroscopy Analysis. Guinea Bauxite

was analyzed by horizontal attenuated total reflection Fourier
transform infrared spectroscopy (HATR-FTIR, PerkinElmer
Spectrum One) before and after batch adsorption experiments
to detect potential changes in hydroxyl (−OH) peaks. Samples
were prepared by exposing 2 g/L of milled bauxite ore either to
a solution of 500 mg F−/L or to a solution of 100 mg F−/L
replaced every hour for 4 h. All samples were allowed to
equilibrate for 24 h and dried overnight at 100 °C before
analysis.
2.6. Estimation of Treatment Costs. We compared per

capita annual material costs of remediating fluoride-contami-
nated groundwater with Guinea bauxite and with AA in the
various synthetic and real groundwater matrices listed in SI
Table S2. For these calculations, we conducted adsorption tests
using each adsorbent a single time in a batch process where the
adsorbent was dispersed in the water and kept well-mixed for
24 h. For AA, we made additional calculations based on
conservative assumptions that AA could be used in a column
filter (breakthrough at 75% capacity), regenerated (through
NaOH treatment) to 70% of its previous capacity, and reused
for four cycles, consistent with data from a 2014 EPA report.13

Our estimates do not include potential material losses during
treatment or the cost of treatment chemicals (e.g., acids and
bases). We also made the following assumptions: volume of
drinking water per capita per day = 7.5 L33 and material costs of
AA and bauxite = $1.5/kg13 and $0.03/kg,12 respectively,
according to current market prices.

3. RESULTS AND DISCUSSION
3.1. Differences in Bauxite Ore Performance. Figure 1a

shows the minimum dose of each bauxite ore required to
reduce fluoride from an initial concentration of 10 mg F−/L in
synthetic Sri Lankan groundwater to below the WHO-MCL of
1.5 mg F−/L. We found that Guinea, Ghana, and U.S. bauxites
performed similarly, with minimum required doses of 9.5−10.6
± 1.0 g/L, while India bauxite had a significantly lower
performance, with a minimum required dose of 22.8 ± 1.0 g/L.
This result shows that the geographical source of bauxite ore
can greatly impact its fluoride removal performance, and
suggests that the chemical composition of the ore may affect

fluoride removal. Compared to previous studies, which used
different bauxite ores (e.g., from Malawi, Texas, Tanzania, etc.),
levels of processing, solution matrices, and initial fluoride
concentrations, our measured minimum required doses are
lower (possibly due to our finer particle size).20−28

3.2. Chemical Characterization of Bauxite Ores. Figure
1b shows the chemical composition of the four bauxite ores as
determined by XRF. All bauxites contained approximately 22−
29% Al and <2% Ti (LODAl= 0.1%, LODTi = 0.01%). Ghana,
India, and Guinea bauxites had significant and comparable
fractions of Fe (∼11−14%) (LODFe = 0.005%). Si was found in
all bauxite ores, and its content ranged from 0.5% in Ghana
bauxite to approximately 9% in U.S. bauxite (LODSi = 0.1%).
The Ca content in most bauxite ores was below the detection
limit (LODCa = 0.02%) except in India bauxite, which
contained 1.8% Ca. Figure 1c shows the XRD patterns of the
4 bauxite ores. The main crystalline Al phase in all bauxites was
gibbsite, and an additional crystalline Fe phase, hematite, was
detected in Ghana, India, and Guinea bauxites. Consistent with
XRF results, kaolinite was found only in U.S. bauxite and
calcium carbonate (CaCO3) was found only in India bauxite.
Taken together, the results in Figures 1b and c show that Al

content and phase cannot explain the lower fluoride removal
performance of India bauxite. The small difference in Al
content between India bauxite and the three other ores (3.8−
6.9%) would not likely result in a greater than 2-fold difference
in the minimum required dose (as suggested by the similar
fluoride removal performance of Guinea and U.S. bauxites
despite their 3.2% difference in Al content) (Figure 1a and c).
Similarly, the observed differences in fluoride removal perform-
ance do not appear to be correlated with the Fe, Si, and Ti
contents and phases. In contrast, the presence of CaCO3 in
India bauxite might be correlated with its poorer fluoride
removal performance. Regardless of the bauxite ore used, ICP-
OES results demonstrated minimal leaching of Al and Fe ions
(final concentrations were below the detection limit; <0.01
ppm), resulting in treated water in conformity with WHO
standards for Al and Fe (<0.1 and <0.3 ppm respectively).

3.3. Adsorption Isotherms and Envelopes. Figure 2a
shows the relationship between adsorption density and
equilibrium solute concentration for each bauxite ore. Our
experimental isotherms were best fitted to the Freundlich
model described by q = KCe

1/n where q (mg/g) is the

Figure 2. Adsorption (A) Isotherms and (B) Envelopes of the four bauxite ores to showing the respective effects of equilibrium fluoride
concentration and pH on fluoride removal. Adsorption isotherms were characterized in 50 mM MES + 5 mM HCO3

−, at a constant pH of 6.0, with
solid lines indicating the Freundlich model fit generated by ISOFIT (fitted model constants and BET surface area are also indicated). Adsorption
envelopes were characterized in 5 mM HCO3

− + buffers, at constant ionic strength, with dashed lines drawn to guide the eye and not to represent a
model fit. We present averages from duplicate experiments and error bars are the largest of the range from duplicate tests and measurement errors
associated with the analytical equipment used (e.g., fluoride probe, Tristar II 3020).
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adsorption density, Ce (mg/L) is the equilibrium adsorbate
(fluoride) concentration, and K (adsorption capacity) and n
(adsorption strength) are constants. The fitted Freundlich
parameters (K and 1/n) of the four ores, specified in Figure 2a,
showed no statistically significant difference (overlapping 95%
confidence intervals), which indicates that all four bauxites have
a similar intrinsic capacity and affinity for fluoride. This finding
suggests that differences in fluoride removal efficiencies
observed between the four bauxite ores in Figure 1a are not
caused by differences in intrinsic adsorption capacity or affinity
(e.g., a lower K value for USA bauxite compared to Guinea and
Ghana bauxites did not result in significantly lower fluoride
removal). Consistent with the virtually identical adsorption
isotherms, the BET surface areas of the four milled bauxite ores
were not significantly different, ranging from 14.1 ± 4.0 to 17.2
± 2.5 m2/g, indicating comparable adsorption capacities
(Figure 2a).
Figure 2b shows that the adsorption envelopes of the four

bauxite ores were close to identical, indicating a similar
adsorption behavior throughout a wide pH range (4−8). In
addition, all ores had an optimal adsorption pH of 5.0−6.0. The
adsorption envelopes demonstrate that pH has a substantial
influence on fluoride removal, with a unit pH increase above
the optimum pH leading to a 50−59% decrease in fluoride
adsorption. These adsorption envelopes are characteristic of
anion sorption, with a decrease in removal both at lower and
higher pH, due to competing reactions of surface protonation
and OH− complexation, respectively. At acidic pH, the ligand-
promoted dissolution of gibbsite and the formation of aqueous
fluoride complexes (e.g., HF, AlF2+ AlF2

+, AlF3, AlF4
−, AlF5

2−,
or AlF6

3−) might also contribute to the decrease in fluoride
removal.15

3.4. Influence of Equilibrium pH on Fluoride Removal.
In batch adsorption experiments in Sri Lankan groundwater
with an initial pH of 6.0 ± 0.1 (Figure 1a), we observed that the
final solution pH after 24 h was significantly higher for India
bauxite (average final pH 7.5 ± 0.1) compared to the 3 other
ores (average final pH 6.4 ± 0.1, 6.3 ± 0.1, and 6.5 ± 0.1 for
U.S., Guinea, and Ghana bauxites, respectively). Although a
minor pH increase is expected upon fluoride adsorption due to
the replacement of OH− groups on the surface of
gibbsite,15,29,34 this ion exchange process cannot account for
the observed differences in final pH between India bauxite and
the other three ores.
To further understand the effect of bauxite addition on

solution pH, we conducted experiments in a simpler electrolyte
(35 mM NaCl) in the absence of fluoride and characterized the
equilibrium pH and composition of the suspension after 24 h.
As summarized in Table 1, we found a significantly higher
equilibrium pH for India bauxite (pH 8.1 ± 0.1, compared to
pH 6.6 ± 0.1, 6.5 ± 0.1, and 6.2 ± 0.4 for Guinea, Ghana, and
U.S. bauxites, respectively), which coincided with substantially
higher concentrations of Ca and inorganic carbon (334 ± 2 μM
Ca and 398 ± 9 μM C, respectively, for India bauxite,
compared to ≤3 μM Ca and ≤35 μM C, respectively, for the
other bauxites). These results are indicative of the dissolution
of CaCO3 (only present in India bauxite, Figure 1b and c), and
the observed increase in pH corresponds to the increase
theoretically expected from the dissolution of ∼0.3 mM CaCO3
(see SI, Section 7).
We concluded that the substantially higher equilibrium pH of

India bauxite compared to the other ores is due to the presence
and partial dissolution of CaCO3. Because an alkaline pH (i.e., a

pH ≫ PZC) is unfavorable for fluoride adsorption (Figure 2b),
the dissolution of CaCO3 is likely responsible for the lower
performance of India bauxite (Figure 1a, SI Figure S2). This
finding is also consistent with the adsorption isotherms of the
globally diverse bauxite ores being similar under constant pH
conditions (Figure 2a). Taken together, our results suggest that
when surface capacities and affinities are comparable, fluoride
removal is primarily influenced by the presence of trace alkaline
minerals such as CaCO3, which alter the equilibrium solution
pH.

3.5. Fluoride Adsorption Mechanism. HATR-FTIR
measurements showed a decrease in transmittance in −OH
peaks (3650−3350 cm−1) upon fluoride adsorption, independ-
ent of the loading method (Figure 3a). Previous FTIR studies
have shown that the peak at ∼3400 cm−1 is characteristic of the
stretching vibration of hydroxyl groups on the surface of
gibbsite.30,35 Therefore, our results suggest that similar to pure
gibbsite, bauxite also forms a specific, inner-sphere complex
with fluoride through ion exchange with − OH groups. Figure
3b shows that varying ionic strength over 2 orders of magnitude
(1−100 mM) did not affect fluoride removal with Guinea
bauxite, despite increased charge screening of the adsorbent
surface. This finding (along with the PZC data presented in SI
Figure S2) indicates that weak, outer-sphere electrostatic
interactions do not play a major role in fluoride adsorption
on bauxite in our pH range of interest, consistent with the
primary role of inner-sphere complexation previously reported
for pure gibbsite.15,29,34

3.6. Comparison between AA and Guinea Bauxite.
Figure 4 compares the minimum required doses and materials
costs for remediating a simple binary-solute electrolyte and
several synthetic and real groundwater matrices (SI Table S2)
with AA and Guinea bauxite (the best performing bauxite ore,
Figure 1a). Our cost estimates are based on experimentally
determined minimum required doses, which demonstrate that
on average, Guinea bauxite requires 1.5−2.3 times the dose of
AA (depending on groundwater composition) to remediate an
initial fluoride concentration of 10 mg F−/L to the WHO-MCL
(Figure 4a). Larger doses required for bauxite are consistent
with its lower specific surface area and thus lower adsorption
capacity (Figure 2a). We found that for both AA and bauxite,
the minimum dose required to reach the WHO-MCL is higher
in synthetic and real groundwater than in the simple binary-
solute electrolyte (NaCl + NaHCO3). This trend is likely due
to the presence of potentially competitive species such as
oxyanions (e.g., SiO4

4−, HCO3
−, SO4

2−, NO3
−),27,32,36 as well

as natural organic matter (likely to be present in real
groundwater).32,37

Table 1. Characterization of pH, Dissolved Calcium, and
Dissolved Inorganic Carbon (DIC) of Each Bauxite Ore in
Equilibrium with a Suspension (35 mM NaCl)a

bauxite
source

equilibrium
pH

equilibrium [Ca2+]
(μM)

equilibrium [DIC]
(μM)

India 8.1 ± 0.1 334 ± 2 398 ± 9
Guinea 6.6 ± 0.1 1.0 ± 0.4 21 ± 12
Ghana 6.5 ± 0.1 0.2 ± 0.1 30 ± 6
U.S. 6.2 ± 0.4 3 ± 1 35 ± 10

aWe present averages from duplicate experiments and reported errors
are the largest of the range from duplicate tests and measurement
errors associated with the analytical equipment used (e.g., pH probe,
Ion Chromatograph, and Total Carbon Analyzer).

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b04601
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b04601


Figure 4b shows that the material cost of fluoride
remediation with Guinea bauxite is consistently and substan-
tially lower than with AA across all tested groundwater
matrices: ∼23−33× lower if AA is assumed to be used in a
single-use batch process and ∼11−18× if AA is assumed to be
used in a column process with media regeneration. Even when
using regenerated AA (which is ∼50% cheaper than single-use
AA), treatment with AA is still significantly more expensive
than with Guinea bauxite as single-use batch media. When
considering the worst performing ore (India bauxite, which
requires 2.4× the minimum dose of Guinea bauxite to

remediate Sri Lankan groundwater, as shown in Figure 1a),
the material cost of using bauxite remains 4.7−8.8× lower than
AA.
In addition to the cost advantage, another benefit of using

mildly processed bauxite as single-use batch media is that in
contrast to AA, the preparation of the bauxite adsorbent does
not involve any activation or regeneration with hazardous
chemicals that can increase the leaching of metals in the
product water. Finally, we note that Guinea bauxite has fluoride
removal kinetics comparable to AA, with approximately 80% of
total fluoride removal occurring in the first hour in synthetic Sri

Figure 3. Investigation of fluoride removal mechanisms through (A) HATR-FTIR absorbance spectra for Guinea bauxite (2 g/L dose) with an initial
fluoride loading of 0, 100 × 4 (replaced every hour for 4 h), and 500 ppm F−, respectively, and (B) Study on effect of ionic strength on fluoride
removal using Guinea bauxite. Initial [F−]: 10 mg F−/L; Dose: 10g/L.

Figure 4. Comparison of (A) Minimum required doses and (B) Annual per capita material costs for remediating several synthetic groundwater
matrices containing 10 mg F−/L and two real groundwater matrices (West Bengal and Nalgonda) to the WHO-MCL (1.5 mg F−/L) using milled
Guinea bauxite (single-use batch process) and unmodified AA (both in single-use batch process and in column process with media regeneration).
We present averages and error bars represent the larger of the range from duplicate tests and measurement errors associated with the fluoride probe.
Cost calculations are described in section 2.6 and recipes for the groundwater matrices are given in SI Table S2.
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Lankan groundwater, confirming that bauxite can realistically be
used in field applications (SI Figure S4).
3.7. Implications for Groundwater Treatment. Overall,

our study demonstrates that mildly processed bauxite ore is an
effective fluoride removal adsorbent capable of remediating
high fluoride levels (up to 10 mg F−/L) to below the WHO-
MCL in groundwater characteristic of affected regions, and is a
cost-competitive alternative to AA. When considering fluoride
removal on a per unit surface area basis, our results suggest that
bauxite has a stronger affinity for fluoride adsorption than AA
(i.e., bauxite requires only ∼2× the dose despite having 7×
lower SSA than AA).
Our results showed that the chemical composition, and

therefore the geographical origin of the bauxite ore, could
substantially impact its fluoride removal performance. Specif-
ically, we found that the presence of trace minerals such as
CaCO3 can reduce the affinity of bauxite ore for fluoride by
modifying the equilibrium suspension pH. Similarly, other
alkaline (e.g., MgCO3, CaMg(CO3)2, etc.) or acidic (e.g., humic
materials, silicates) minerals often present in bauxite ores31 may
affect their fluoride removal performance. Of the four ores we
tested, India bauxite was the least efficient, but it is
geographically closest to 1/3 of the fluoride-affected popula-
tion,18 which highlights the need to analyze the trade-offs
between transportation costs and adsorption efficiency. Future
research will (i) investigate nonhazardous and locally
appropriate activation methods to potentially enhance India
bauxite’s performance and cost-competitiveness; and (ii) will
determine if any nonalkaline bauxite deposits are present in
India. We also found that fluoride adsorbs to bauxite through
an ion-exchange process; therefore future work should focus on
the effect of potential competitors commonly found in
groundwater (e.g., Cl−, NO3

−, SO4
2−, PO4

3−, NOM), which
may significantly impact the efficiency of fluoride removal by
bauxite in the field.
Finally, prior to implementing this water treatment process

in the field, additional research must be conducted to (1)
identify potential low-cost solid-separation methods and (2)
test the efficiency of different reactor designs such as a
sequential batch reactor (to saturate/reuse bauxite media) and
a column filter with regeneration (using larger particle size to
avoid clogging).
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Calderoń, J. Decreased intelligence in children and exposure to
fluoride and arsenic in drinking water. Cad. Saude Publica 2007, 23
(4), S579−S587.
(6) Ozsvath, D. L. Fluoride and environmental health: A review. Rev.
Environ. Sci. Bio/Technol. 2009, 8 (1), 59−79.
(7) Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S. Fluoride in
Drinking Water and Defluoridation of Water. Chem. Rev. 2012, 112
(4), 2454−2466.
(8) Osterwalder, L.; Johnson, C. A.; Yang, H.; Johnston, R. B. Multi-
criteria assessment of community-based fluoride-removal technologies
for rural Ethiopia. Sci. Total Environ. 2014, 488−489 (1), 532−538.
(9) Mwenge Kahinda, J.; Taigbenu, A. E.; Boroto, J. R. Domestic
rainwater harvesting to improve water supply in rural South Africa.
Phys. Chem. Earth, Parts A/B/C 2007, 32 (15−18), 1050−1057.
(10) Dahi, E. The State of Art of Small Community Defluoridation of
Drinking Water. In Proceedings of the 3rd International Workshop on
Fluorosis Prevention and Defluoridation of Water; Chiang Mai, Thailand,
November 20−24, 2000.
(11) Chen, W.-Q.; Graedel, T. E. Dynamic analysis of aluminum
stocks and flows in the United States: 1900−2009. Ecol. Econ. 2012,
81, 92−102.
(12) Bray, L. USGS Mineral Commodities Summaries 2015: Bauxite
and Alumina; United States Geologic Survey: Reston, VA, 2016;
http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-
2015-bauxi.pdf.
(13) Sorg, T. Removal of Fluoride from Drinking Water Supplies by
Activated Alumina; US EPA: Cincinnati, OH, 2014; https://nepis.epa.
gov/Adobe/PDF/P100KFZQ.pdf.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b04601
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.est.6b04601
http://pubs.acs.org/doi/abs/10.1021/acs.est.6b04601
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b04601/suppl_file/es6b04601_si_001.pdf
mailto:katyacherukumilli@gmail.com
http://orcid.org/0000-0002-8606-1845
http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf
http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf
http://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf
http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2015-bauxi.pdf
http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2015-bauxi.pdf
https://nepis.epa.gov/Adobe/PDF/P100KFZQ.pdf
https://nepis.epa.gov/Adobe/PDF/P100KFZQ.pdf
http://dx.doi.org/10.1021/acs.est.6b04601


(14) Choi, W.-W.; Chen, K. Y. The Removal of Fluoride From
Waters by Adsorption. J. Am. Water Works Assoc. 2012, 71 (10), 562−
570.
(15) Farrah, H.; Slavek, J.; Pickering, W. Fluoride interactions with
hydrous aluminium oxides and alumina. Aust. J. Soil Res. 1987, 25 (1),
55−69.
(16) Vithanage, M.; Rajapaksha, A. U.; Bootharaju, M. S.; Pradeep, T.
Surface complexation of fluoride at the activated nano-gibbsite water
interface. Colloids Surf., A 2014, 462, 124−130.
(17) Gomoro, K.; Zewge, F.; Hundhammer, B.; Megersa, N. Fluoride
removal by adsorption on thermally treated lateritic soils. Bull. Chem.
Soc. Ethiop. 2012, 26 (3), 361−372.
(18) UNICEF. State of Art Report on Extent of Fluoride In Drinking
Water and the Resulting Endemicty in India; Fluorosis Resarch and
Rural Development Foundation: New Delhi, India, 1999.
(19) Detailed Information of Bauxite in India; Geologic Survey of
India: Hyderabad, India, 1994; Vol.,211; http://www.portal.gsi.gov.in/
gsiDoc/pub/DID_Bauxite_WM.pdf.
(20) Buamah, R.; Mensah, R. A.; Salifu, A. Adsorption of fluoride
from aqueous solution using low cost adsorbent. Water Sci. Technol.:
Water Supply 2013, 13 (2), 238−248.
(21) Craig, L.; Stillings, L.; Decker, D.; Thomas, M. J. Comparing
activated alumina with indigenous laterite and bauxite as potential
sorbents for removing fluoride from drinking water in Ghana. Appl.
Geochem. 2015, 56, 50−66.
(22) Kalista, P. H. Defluoridation of High Fluoride Waters from
Natural Water Sources by Using Soils Rich in Bauxite and Kaolinite. J.
Eng. Appl. Sci. 2009, 4 (4), 240−246.
(23) Kayira, C.; Sajidu, S.; Masamba, W.; Mwatseteza, J.
Defluoridation of Groundwater Using Raw Bauxite: Kinetics and
Thermodynamics. Clean: Soil, Air, Water 2014, 42 (5), 546−551.
(24) Lavecchia, R.; Medici, F.; Piga, L.; Rinaldi, G.; Zuorro, A.
Fluoride removal from water by adsorption on a high alumina content
bauxite. Chem. Eng. Trans. 2012, 26, 225−230.
(25) Mohapatra, D.; Mishra, D.; Mishra, S. P.; Chaudhury, G. R.;
Das, R. P. Use of oxide minerals to abate fluoride from water. J. Colloid
Interface Sci. 2004, 275 (2), 355−359.
(26) Sajidu, S.; Kayira, C.; Masamba, W.; Mwatseteza, J.
Defluoridation of Groundwater Using Raw Bauxite: Rural Domestic
Defluoridation Technology. Environ. Nat. Resour. Res. 2012, 2 (3), 1−
9.
(27) Sujana, M. G. G.; Anand, S. Fluoride removal studies from
contaminated ground water by using bauxite. Desalination 2011, 267
(2−3), 222−227.
(28) Thole, B.; Mtalo, F.; Masamba, W. Groundwater Defluoridation
with Raw Bauxite, Gypsum, Magnesite, and Their Composites. Clean:
Soil, Air, Water 2012, 40 (11), 1222−1228.
(29) Dzomback, D. A.; Karamalidis, A. K. Surface Complexation
Modeling: Gibbsite; Wiley: New York, 2010.
(30) Dodoo-Arhin, D.; Konadu, D. S.; Annan, E.; Buabeng, F. P.;
Yaya, A. Fabrication and Characterisation of Ghanaian Bauxite Red
Mud-Clay Composite Bricks for Construction Applications. Am. J.
Mater. Sci. 2013, 3 (5), 110−119.
(31) Authier-Martin, M.; Forte, G.; Ostap, S.; See, J. The mineralogy
of bauxite for producing smelter-grade alumina. JOM 2001, 53 (12),
36−40.
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