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ABSTRACT 

Light utilization is finely tuned in photosynthetic organisms to prevent cellular damage. The 

dissipation of excess absorbed light energy, a process termed NPQ, plays an important role in 

photoprotection. Little is known about the sustained or slowly reversible form(s) of NPQ and 

whether they are photoprotective, in part due to the lack of mutants. The Arabidopsis thaliana 

suppressor of quenching1 (soq1) mutant exhibits enhanced sustained NPQ, which we term qH. 

To identify molecular players involved in qH, we screened for suppressors of soq1 and isolated 

mutants affecting either chlorophyllide a oxygenase (CAO) or the chloroplastic lipocalin (CHL), 

now renamed plastid lipocalin (LCNP). Analysis of the mutants confirmed that qH is localized to 

the peripheral antenna (LHCII) of photosystem II and demonstrated that LCNP is required for 

qH, either directly (by forming NPQ sites) or indirectly (by modifying the LHCII membrane 

environment). qH operates under stress conditions such as cold and high light and is 

photoprotective, as it reduces lipid peroxidation levels. We propose that, under stress conditions, 

LCNP protects the thylakoid membrane by enabling sustained NPQ in LHCII, thereby 

preventing singlet oxygen stress. 
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INTRODUCTION 1 

Photosynthesis is a biological process of primary importance, as it provides the energy that 2 

drives food, feedstock and biofuel production and mitigates climate change. Light in excess of 3 

photosynthetic capacity can lead to cellular damage (Li et al., 2009b). Thus, various ways to 4 

protect against photodamage have evolved, including ways to minimize light absorption, 5 

detoxify reactive oxygen species generated by excess light, and dissipate excess absorbed light 6 

energy (Horton et al., 1996). Together, these processes are known as photoprotection. The 7 

harmless dissipation of excess absorbed light energy as heat is commonly called non-8 

photochemical quenching (NPQ). The term NPQ originated from the way this process is assayed 9 

through monitoring a decrease (or quenching) of chlorophyll fluorescence. In contrast, 10 

photochemical quenching of chlorophyll fluorescence reflects photochemistry, the process in 11 

which light energy is converted to chemical energy in the form of ATP and NADPH. Despite the 12 

physiological importance of photoprotection, the molecular mechanisms of NPQ that protect 13 

against sustained light stress remain largely unknown. 14 

 NPQ mechanisms have been classified according to their relaxation kinetics and their 15 

sensitivities to chemical inhibitors and mutations (Walters and Horton 1993, Nilkens et al., 16 

2010). From faster to slower relaxing components, energy-dependent quenching, qE (Krause et 17 

al., 1982), zeaxanthin-dependent quenching, qZ (Dall'Osto et al., 2005, Nilkens et al., 2010), 18 

quenching due to chloroplast movement, qM (Cazzaniga et al., 2013), and photoinhibitory 19 

quenching, qI (Krause 1988) have been shown to contribute to NPQ, whereas quenching due to 20 

state transitions, qT, is considered to be a minor contributor to NPQ in saturating light (Nilkens 21 

et al., 2010). The relative contribution of each of these components in protecting photosystem II 22 

(PSII) from photodamage and their occurrence under different conditions is not fully understood 23 

(Lambrev et al., 2012, Ruban 2016).  24 

 qE, also referred to as the flexible mode of energy dissipation, is the most well-studied 25 

NPQ component, and its key molecular players have been identified. In vascular plants, the 26 

protein PsbS senses acidification of the lumen upon light exposure and, together with the 27 

xanthophyll pigment zeaxanthin, is necessary to catalyze the formation of a quenching site 28 

(Demmig et al., 1987, Niyogi et al., 1997, Li et al., 2000, Johnson and Ruban 2011, Sylak-29 

Glassman et al., 2014). Previously, we asked the question whether NPQ could be rescued in the 30 
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absence of either of these key players. From a suppressor screen using the Arabidopsis thaliana 31 

npq1 mutant, which lacks zeaxanthin, we found that the xanthophyll pigment lutein can partially 32 

replace the function of zeaxanthin (Li et al., 2009a). Through a suppressor screen using the npq4 33 

mutant lacking PsbS, we uncovered a slowly reversible form of NPQ, thus pertaining to qI, 34 

which is negatively regulated by SUPPRESSOR OF QUENCHING1 (SOQ1) (Brooks et al., 35 

2013). qI comprises processes that relax slowly, such as photoinhibition, which is defined as the 36 

light-induced decrease in the quantum yield of photosynthetic carbon fixation. qI can be due to 37 

photo-oxidative damage to the D1 protein of PSII (Edelman and Mattoo 2008). However, not all 38 

of qI is due to PSII photodamage, as there are slowly relaxing fluorescence quenching processes 39 

that are independent of D1 damage (Demmig and Björkman 1987) or D1 function (Chow et al., 40 

1989). The Arabidopsis soq1 mutant is a genetic entry point into studying qI unrelated to PSII 41 

photodamage. 42 

 The form of NPQ negatively regulated by SOQ1 is independent of known components 43 

required for other types of NPQ, such as PsbS, zeaxanthin, ΔpH formation or the STN7 kinase 44 

(Brooks et al., 2013). We now term this component qH to distinguish this photoprotective, 45 

slowly reversible NPQ from qI; like its position in the alphabet, the photoprotective quenching 46 

"H" comes before quenching due to PSII photodamage (and possibly other yet-to-be-discovered, 47 

slowly relaxing photoinhibitory NPQ processes) "I". Sustained ΔpH-independent NPQ has been 48 

described in evergreens, for example (Demmig-Adams et al., 2014), and we are now uncovering 49 

the molecular players involved in qH, which is a good candidate for this photoprotection mode. 50 

SOQ1 is a chloroplast-localized membrane protein of 104 kDa that contains multiple domains, 51 

including a HAD phosphatase on the stromal side of the thylakoid membrane, a transmembrane 52 

helix, and thioredoxin-like and β-propeller NHL domains on the lumenal side of the thylakoid 53 

membrane. The stromal domain is dispensable for SOQ1 to negatively regulate NPQ, whereas 54 

the lumenal domains are required (Brooks et al., 2013). 55 

 To elucidate the mechanism of the NPQ component qH and to identify possible targets of 56 

SOQ1, we performed a suppressor screen on the soq1 npq4 mutant and searched for mutants that 57 

no longer exhibited this slowly reversible NPQ. We proposed that SOQ1 is involved in reducing 58 

lumenal or lumen-exposed target proteins to prevent formation of slowly reversible antenna 59 

quenching, either directly or via another protein (Brooks et al., 2013). We expect that 60 

suppressors (in the classical genetic definition) of the enhanced quenching observed in the soq1 61 
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npq4 mutant background might be mutated in the site of quenching or in a putative downstream 62 

target of SOQ1. By definition, the NPQ phenotype of these suppressors (triple mutants) will 63 

return to the initial low NPQ phenotype, which is that of npq4. Two types of mutants emerged 64 

from the screen, including one type affecting the peripheral antenna of PSII and one type 65 

identifying the likely downstream target of SOQ1. These findings confirm that qH occurs in the 66 

antenna, specifically in the peripheral antenna of PSII, and demonstrate that the plastid lipocalin 67 

is required for this quenching mechanism to occur. 68 

 69 

RESULTS 70 

Chlorophyllide a oxygenase (CAO) suppressors identify the requirement of chlorophyll b 71 

for qH 72 

To elucidate qH further, we conducted a suppressor screen using the Arabidopsis soq1 npq4 73 

mutant. We chose this double mutant as the starting genotype to minimize the identification of 74 

mutations affecting PsbS-dependent qE or ΔpH formation. We generated an ethyl 75 

methanesulfonate (EMS)-mutagenized M2 population and screened it by video imaging of 76 

chlorophyll a fluorescence for the suppression of qH. Out of 22,000 mutant individuals screened, 77 

a class comprising two independent mutants, #26 and #42, showed a pale green phenotype and 78 

displayed NPQ kinetics similar to that of npq4 (Figure 1A). HPLC analysis of pigments showed 79 

that the visible pale green phenotype was due to a lack of chlorophyll b (Figure 1B). This 80 

pigmentation phenotype has previously been observed in mutants defective in the gene encoding 81 

chlorophyllide a oxygenase (CAO), which is required for chlorophyll b synthesis (Espineda et 82 

al., 1999). Sequencing the CAO gene in mutants #26 and #42 revealed single base pair (C-to-T) 83 

mutations, resulting in Thr375Ile and Gln89STOP, respectively. As three mutant CAO alleles 84 

have been previously described in Arabidopsis (Hirono and Redei 1963, Espineda et al., 1999, 85 

Oster et al., 2000), we named these new alleles chlorina1-4 and chlorina1-5, respectively. To 86 

independently recapitulate these findings, we crossed soq1 with the chlorina1-3 mutant, which is 87 

another null allele of CAO. The soq1 chlorina1-3 double mutant did not show additional 88 

quenching compared to chlorina1-3 (Figure 1C), confirming the requirement of chlorophyll b for 89 

qH. 90 

 91 

A class of suppressors from the genetic screen that does not show a pigment defect 92 
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Another class comprising two independent mutants, #205 and #252, displayed NPQ kinetics 93 

similar to that of npq4 (Figure 2A, blue and green curves) and showed a "normal green" 94 

phenotype with wild-type pigment content (Figure 2B and Table 1). The F1 progenies of a cross 95 

between these two suppressor mutants (homozygous for soq1 and npq4 but heterozygous for 96 

each new mutation) showed a low level of NPQ similar to that of npq4 (Figure 2A, grey curve), 97 

indicating that the two mutations belong in the same complementation group. We therefore 98 

proceeded to the genetic analysis of only one of these two mutants (#205). The mutation in #205 99 

is semi-dominant, as shown by the intermediate NPQ phenotype of the F1 progenies from the 100 

cross soq1 npq4 x #205 (Figure 2A, orange curve). The low NPQ phenotype segregated in a 101 

1:2:1 pattern in the F2 generation from this cross, indicating that the phenotype is caused by 102 

mutation of a single nuclear gene. 103 

 104 

Identification of the mutated gene in normal green suppressors using whole-genome 105 

sequencing 106 

Mapping-by-sequencing in Arabidopsis has recently been proven successful in several studies to 107 

determine the causative mutation of a specific phenotype (Schneeberger et al., 2009, Sorek et al., 108 

2015). To this aim, we backcrossed the mutant #205 to the parental strain soq1 npq4 used for the 109 

EMS mutagenesis and selected individuals that lacked qH from the F2 progeny (which represent 110 

one quarter of the individuals with genotype soq1 npq4 and homozygous for the new mutation). 111 

Genomic DNA was extracted from a pool of 75 F2 seedlings exhibiting the mutant phenotype 112 

and subjected to whole-genome sequencing. The sequencing reads were mapped onto the Col-0 113 

Arabidopsis reference genome with approximately 100x average coverage (Supplemental Table 114 

1), and single nucleotide polymorphisms were identified. The position and frequency of each 115 

single nucleotide polymorphism were plotted to look for a region of the genome showing 116 

enrichment in the allelic frequency of segregating mutations (Supplemental Figure 1). An 117 

increase in the allelic frequency of mutations approaching 100% was observed in the region 118 

between 16.5 and 21 Mbp on chromosome 3, identifying this region as the one containing the 119 

causative mutation. We sequenced the #252 mutant, which contains an independent mutant allele 120 

of the gene of interest. Of the five genes containing mutations predicted to cause an amino acid 121 

change within the mapped region of #205, only one gene, At3g47860 encoding the chloroplastic 122 

lipocalin (CHL), now renamed plastid lipocalin (LCNP), was also mutated in #252 123 
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(Supplemental Table 2). Please note that we renamed this protein to avoid confusion with the 124 

abbreviation Chl that is commonly used for chlorophyll and to be consistent with the 125 

nomenclature used for the animal lipocalin family (LCN). Nucleotide transitions C to T and G to 126 

A resulted in Ala255Val in #205 and a mutated splice site in #252, respectively (Figure 3). We 127 

named these alleles lcnp-2 and lcnp-3 and accordingly named the knockout (KO) allele AtCHL 128 

KO (T-DNA SALK insertion line) described in (Levesque-Tremblay et al., 2009) lcnp-1. We 129 

will use lcnp when referring to the latter line for clarity. 130 

 131 

The plastid lipocalin is required for qH to occur 132 

We examined the NPQ phenotype of lcnp and found that it exhibited the same NPQ kinetics and 133 

amplitude as wild type when grown under standard conditions and induced at 1200 μmol photons
 134 

m
-2

 s
-1

 (Figure 2C, green curve). This result indicates that LCNP does not play a role in NPQ 135 

under these conditions. However, as evidenced by the two suppressor mutants #205 and #252, 136 

the additional NPQ observed in the soq1 npq4 mutant relies on the presence of the LCNP 137 

protein. To confirm the involvement of LCNP in qH, we crossed the single soq1 mutant to lcnp. 138 

The soq1 lcnp double mutant showed an NPQ phenotype similar to wild type (Figure 2C, blue 139 

curve), which further validates the requirement of LCNP for qH to occur. The soq1/soq1 140 

lcnp/LCNP strain showed NPQ kinetics intermediate to that of the soq1 mutant and the wild 141 

type, which means that the lcnp mutation is semi-dominant (Figure 2C, orange curve). Similarly, 142 

as stated above, the mutation LCNP-Ala255Val in lcnp-2 (#205) is semi-dominant in that the 143 

NPQ phenotype of the soq1/soq1 npq4/npq4 lcnp-2/LCNP strain is intermediate to that of soq1 144 

npq4 and npq4 (Figure 2A, orange curve). 145 

 146 

Immunoblot analysis shows that the mobility of LCNP is altered in soq1  147 

We probed the accumulation of the LCNP protein in the suppressor mutants by immunoblot 148 

analysis. The amino acid change in the lcnp-2 allele resulted in the reduced accumulation of the 149 

protein (Figure 4A). The mutated splice site in lcnp-3 resulted in the absence of LCNP (Figure 150 

4A). Plants heterozygous for the lcnp mutation (soq1/soq1 lcnp/LCNP) contained intermediate 151 

amounts of LCNP protein (Figure 4B and Supplemental Figure 2). Interestingly, the apparent 152 

molecular mass of LCNP was slightly higher (approximately 1.5 kD) in the soq1 mutant 153 

background compared to wild type (Figure 4A and B). This migration shift was also observed in 154 
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the lcnp-2 allele. Because SOQ1 contains a thioredoxin-like domain in the lumen, it is possible 155 

that SOQ1 maintains its target(s) in a reduced state (Brooks et al., 2013). LCNP is a soluble 156 

protein located in the lumen (Levesque-Tremblay et al., 2009) that contains six conserved 157 

cysteine residues (Figure 3); the altered mobility of LCNP in the soq1 mutant background 158 

suggest that this protein could be an oxidized form of LCNP; however, it was not reversed by the 159 

addition of DTT, a reducing agent (Figure 4A). Attempts to determine the reason for this altered 160 

mobility have so far been unsuccessful. We tested whether it was a signature for active LCNP, 161 

but it does not seem to be the case, as LCNP in Col-0 still migrated differently from LCNP in 162 

soq1 after a cold and high light treatment (Figure 4B) that induces qH (see below). However, this 163 

altered mobility suggests that SOQ1 and LCNP function within a similar pathway at the 164 

biochemical level. 165 

 166 

qH operates in cold and high light conditions  167 

Both LCNP mRNA and protein expression increase during abiotic stresses such as high light and 168 

drought (Levesque-Tremblay et al., 2009). Interestingly, the lcnp mutant shows increased lipid 169 

peroxidation after a high light (1300 μmol photons
 
m

-2
 s

-1
) and cold treatment (7°C) for 24 h 170 

(Levesque-Tremblay et al., 2009). We hypothesized that LCNP-dependent qH contributes to 171 

abiotic stress resistance and thus tested the induction of qH under cold and high light conditions 172 

in the different genotypes (Col-0, lcnp, soq1, and soq1 lcnp). Figure 5A (left panel) shows that 173 

all four lines grew similarly under standard growth conditions and presented no visible 174 

differences. Under control conditions, all four lines displayed similar minimal fluorescence, Fo 175 

and maximal fluorescence, Fm, parameters (Figure 5B and C, left panel). However, after a 6 h 176 

cold (6°C) and high light (1500 μmol photons
 
m

-2
 s

-1
) treatment, Fo and Fm values were 177 

significantly lower in Col-0 and soq1 compared to lcnp and soq1 lcnp (Figure 5B and C, right 178 

panel). This experiment demonstrates that under cold and high light stress, Col-0 displayed 179 

quenching of both Fm and Fo in an LCNP-dependent manner (Figure 5B and C, right panel Col-0 180 

versus lcnp). Similarly, soq1 displayed quenching of both Fm and Fo in an LCNP-dependent 181 

manner (Figure 5B and C, right panel soq1 versus soq1 lcnp). Yet, soq1 displayed a larger 182 

decrease in Fm compared to Col-0 (Figure 5C, right panel Col-0 versus soq1), which reveals the 183 

contribution of LCNP-dependent quenching during stress condition when its inhibitor, SOQ1, is 184 

no longer preventing quenching from occurring. These observed differences in fluorescence 185 
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characteristics are due to the combination of both cold and high light conditions, as a cold and 186 

standard light treatment did not lead to changes in Fm (Supplemental Figure 3B, right panel). We 187 

also confirmed that fluorescence differences are not due to altered chlorophyll content or de-188 

epoxidation state (A+Z)/(V+A+Z) (Supplemental Table 3).  189 

 The fluorescence phenotype induced by cold and high light treatment of seedlings (Figure 190 

5) was also observed at later growth stages in mature plants (Figure 6A). We repeated the cold 191 

and high light experiment on detached leaves (Figure 6B, Supplemental Figure 4) and calculated 192 

NPQ from the Fm values before treatment and after treatment plus a 10-min dark acclimation to 193 

relax qE (Figure 6C). Therefore, the measured NPQ represents the sum of slowly relaxing 194 

quenching components: qH, qZ, and qI. We confirmed the observations from the seedling 195 

experiment and found that in agreement with the semi-dominant nature of the lcnp mutation in 196 

the soq1 background, the soq1/soq1 lcnp/LCNP line displayed intermediate Fm quenching 197 

between Col-0 and soq1. We also tested the cold and high light response in the original 198 

suppressor lines containing the npq4 mutation and observed a similar trend as in the wild-type 199 

background: enhanced qH in soq1 npq4 compared to npq4 that required LCNP (soq1 npq4 lcnp-200 

3 lacks LCNP protein and therefore its NPQ value was equivalent to that of lcnp). Of note, soq1 201 

npq4 lcnp-2, which contains a low amount of LCNP-Ala255Val, displayed some Fm quenching 202 

compared to soq1 npq4 lcnp-3. Similar to the seedling experiment, the chlorophyll content and 203 

de-epoxidation state were equivalent among genotypes (Table 1 and Supplemental Table 4). We 204 

compared the organization of thylakoid complexes by non-denaturing gel electrophoresis using 205 

the 25BTH20G method described by (Järvi et al., 2011) to preserve the integrity of the 206 

membrane complexes and did not see any organizational differences among genotypes under 207 

conditions in which qH is on (cold high light) or off (growth light) (Supplemental Figure 5). 208 

 209 

LCNP-dependent quenching qH is photoprotective 210 

To further explain the stress sensitivity exhibited by the lcnp mutant under cold and high light 211 

conditions (Levesque-Tremblay et al., 2009), we tested whether operation of qH is 212 

photoprotective by measuring lipid peroxidation levels. Lipid peroxidation autoluminescence 213 

imaging measures the faint light emitted by triplet carbonyls and 
1
O2 by-products of the slow 214 

spontaneous decomposition of lipid hydroperoxides and endoperoxides (Havaux et al., 2006). A 215 

high value of autoluminescence corresponds to a high level of lipid peroxidation. Figure 7A and 216 
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7D confirm that, under the conditions used, LCNP-dependent NPQ was on, as demonstrated by 217 

the low Fm values in lines containing LCNP. In agreement with previously published data 218 

(Levesque-Tremblay et al., 2009), lcnp showed a high level of lipid peroxidation compared to 219 

Col-0 (Figure 7E). Importantly the soq1 mutant displayed a lower level of lipid peroxidation 220 

compared to Col-0 (Figure 7B). We further quantified lipid peroxidation levels by measuring the 221 

concentration of oxidation products of linolenic acid, the major polyunsaturated fatty acid in 222 

plant leaves. Hydroxyoctadecatrienoic acid (HOTE) level was calculated as the sum of the 223 

various HOTE isomers (9-, 12-, 13- and 16-HOTE). Both soq1 and Col-0 had significantly lower 224 

levels of HOTE compared to lcnp, and soq1 also had significantly lower levels of HOTE 225 

compared to Col-0 (Figure 7C and F).  226 

 Overexpression (OE) of LCNP has been shown to result in lower levels of lipid 227 

peroxidation (Levesque-Tremblay et al., 2009). We tested whether this was associated with 228 

increased NPQ, which was indeed the case, as LCNP OE displayed lower Fm than Col-0 (Figure 229 

7A). Consequently, the low Fm value correlated (similarly to soq1) to low levels of lipid 230 

peroxidation and HOTE in LCNP OE (Figure 7B and C). Altogether, these results demonstrate 231 

that the LCNP-dependent qH quenching mechanism is photoprotective. 232 

 233 

DISCUSSION 234 

The molecular basis of sustained forms of energy dissipation is not well known. Previously, we 235 

identified a factor, SOQ1, that negatively regulates such a form of energy dissipation (Brooks et 236 

al., 2013), which we named qH. In the work reported here, we found a factor, LCNP, that is 237 

required for this form of energy dissipation to occur. 238 

 239 

The sustained NPQ mechanism qH depends on LCNP and is photoprotective 240 

The plastid lipocalin, LCNP, is required for qH, as neither the triple mutants soq1 npq4 lcnp-2 241 

(#205) and soq1 npq4 lcnp-3 (#252) (Figure 2A) nor the double mutant soq1 lcnp (Figure 2C) 242 

showed the additional quenching that is characteristic of soq1. LCNP has been previously shown 243 

to accumulate under drought and high light stresses where it is thought to function in preventing 244 

or modulating singlet oxygen (
1
O2)-mediated lipid peroxidation (Levesque-Tremblay et al., 245 

2009). We investigated whether the stress sensitivity exhibited by the lcnp mutant after cold and 246 

high light stress (Levesque-Tremblay et al., 2009) was due to the lack of the quenching 247 
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mechanism enabled by LCNP. We indeed found that exposure to cold and high light conditions 248 

results in sustained quenching of both Fo and Fm that is LCNP dependent (Figures 5, 6 and 249 

Supplemental Figure 4), indicating that LCNP-dependent qH quenching operates in wild type 250 

under these conditions. LCNP-dependent quenching is equivalent to the difference in Fm level 251 

between wild type and lcnp (see also Figure 6C for NPQ calculation). Furthermore, operation of 252 

qH is photoprotective, as shown by the decreased lipid peroxidation levels in both wild type 253 

(Figure 7, Col-0) and mutants with enhanced qH (Figure 7, soq1 and LCNP OE) when treated 254 

with cold and high light and by the reduced bleaching in response to this stress (Supplemental 255 

Figure 6). Levesque-Tremblay et al. (2009) proposed that LCNP manages peroxidized lipids by 256 

either detoxifying them or preventing their formation. NPQ has been proposed to mitigate 
1
O2 257 

production (Müller et al., 2001), and PsbS-dependent quenching has been shown to limit 
1
O2 258 

production (Roach and Krieger-Liszkay 2012). Our study therefore suggests that the 259 

accumulation of peroxidized lipids observed in lcnp following abiotic stress is a consequence of 260 

the absence of the photoprotective NPQ mechanism enabled by LCNP and thus, that LCNP 261 

might function in preventing the formation of peroxidized lipids. In addition to or as part of its 262 

role in NPQ, it is conceivable that LCNP might detoxify peroxidized lipids directly; this function 263 

would further contribute to decreasing levels of lipid peroxidation. 264 

 265 

Function of LCNP in NPQ 266 

The name of the lipocalin domain comes from the eight-stranded anti-parallel beta sheet that 267 

forms a barrel or a calyx (cup-like structure) and its high affinity for small hydrophobic 268 

molecules. Proteins from the lipocalin family bind to or carry hydrophobic molecules such as 269 

retinoids, fatty acids, steroids, odorants and pheromones or can have enzymatic activity, e.g. 270 

prostaglandin isomerase (Grzyb et al., 2006). A distinction is made between true lipocalins and 271 

lipocalin-like proteins based on the number of structurally conserved regions (SCR) they contain 272 

(Charron et al., 2005). LCNP belongs to the group of true lipocalins, as it contains three SCRs 273 

(Figure 3). In the Arabidopsis genome (or other land plants), there is another true lipocalin, TIL 274 

for temperature-induced lipocalin (Frenette Charron et al., 2002), which locates to different cell 275 

membranes and organelles (but not the chloroplast), depending on growth conditions (Charron et 276 

al., 2005, Hernández-Gras and Boronat 2015). TIL and LCNP play a role during abiotic stress 277 

and have overlapping functions in protecting against lipid peroxidation (Boca et al., 2014), but 278 
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their mechanism of action is unknown. The first reported plant lipocalin-like proteins are the 279 

xanthophyll cycle enzymes VDE and ZEP (Bugos et al., 1998), which also play an important role 280 

in photoprotection (Niyogi et al., 1998). LCNP-dependent NPQ does not require zeaxanthin 281 

(Brooks et al., 2013), violaxanthin or lutein (Supplemental Figures 7, 8 and 9), so the known 282 

carotenoids involved in light harvesting or energy dissipation are unlikely to be the hydrophobic 283 

molecule that LCNP binds. Further experiments that aim at determining the ligand or substrate of 284 

LCNP will provide insights into its involvement in enabling this sustained form of energy 285 

dissipation.  286 

 Interestingly, heterozygotes for the mutation in LCNP in a soq1 homozygote context 287 

showed an intermediate NPQ phenotype (Figure 2A, 2C and Figure 6C). This observation means 288 

that the yield of qH is sensitive to LCNP copy number and likely LCNP protein level. This semi-289 

dominance could signify that LCNP has enzymatic activity and is rate-limiting for the reaction it 290 

catalyzes, as was proposed for PsbS and LUT2 based on heterozygotes of npq4 (Li et al., 2000) 291 

and lut2 (Pogson et al., 1996), mutations that show a similar dosage-dependent phenotype. 292 

Accordingly, the overexpression of LCNP resulted in higher NPQ than Col-0 (Figure 7A). 293 

Perhaps LCNP is the site of quenching itself, but its lumenal localization (even if it would be 294 

tethered to the membrane during quenching activity) seems to be incompatible, in terms of 295 

distance, with a hypothesized charge- or energy-transfer from the PSII peripheral antenna (see 296 

below). In either case, our results imply that there is a correlation between the yield of qH and 297 

the amount (or activity) of LCNP rather than LCNP being limited by a putative substrate. The 298 

variant LCNP-Ala255Val showed a lower accumulation of the protein (Figure 4A), which led to 299 

no induction of additional NPQ in the soq1 mutant context during a 10-min light treatment 300 

(Figure 2A, blue curve). However after a 6 h cold and high light treatment, some NPQ can be 301 

turned on (Figure 6B and C, soq1 npq4 lcnp-2 compared to soq1 npq4 lcnp-3). Ala255Val 302 

destabilizes the LCNP protein and results in partial loss of function. Residue Ala255 from 303 

AtLCNP shows 100% conservation among the eight sequences of LCNP homologs analyzed in 304 

(Charron et al., 2005) and is located at the end of SCR2 (Figure 3), which is consistent with its 305 

impact on LCNP function. 306 

 307 
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The site of qH is in the antenna of PSII 308 

In our suppressor screen on soq1 npq4, we also identified two new mutant alleles affecting 309 

chlorophyllide a oxygenase (CAO), as demonstrated by the absence of chlorophyll b in the 310 

mutants #26 and #42 (Figure 1B) and confirmed by candidate gene sequencing. CAO is located 311 

in the chloroplast and catalyzes a two-step oxygenase reaction involved in the synthesis of 312 

chlorophyll b through its Rieske [2Fe2S cluster] and non-heme iron cofactors (Tanaka et al., 313 

1998). The alleles described previously in Arabidopsis were obtained by X-ray mutagenesis. 314 

chlorina1-1 is a null allele that accumulates a truncated form of the protein (415 amino acids out 315 

of 536). chlorina1-2 is a leaky allele and contains an amino acid change Val274Glu within the 316 

2Fe2S cluster binding site. chlorina1-3 is a null allele with a deletion of 40 amino acids at the 317 

iron-binding site. Through EMS mutagenesis, we found two additional alleles named chlorina1-318 

4 and chlorina1-5, which respectively correspond to Gln89STOP and Thr375Ile. The truncated 319 

protein resulting from the early stop codon in chlorina1-4 is likely to produce a nonfunctional 320 

protein. Thr375 is a conserved amino acid (Tomitani et al., 1999) located in the vicinity of the 321 

iron-binding site, suggesting that chlorina1-5 is likely to affect catalytic activity. As chlorophyll 322 

b was not detected in either chlorina1-4 or -5 (Figure 1B), it appears that they are both null 323 

alleles of CAO, which is consistent with the nature of the mutations. 324 

 The soq1 npq4 chlorina1-4 and -5 mutants displayed a low level of NPQ similar to that 325 

of npq4 (Figure 1A), and accordingly soq1 chlorina1-3 displayed the same level of NPQ as the 326 

chlorina1-3 mutant (Figure 1C). A chlorina1 mutant lacks oligomeric organization of Lhcb 327 

proteins such as trimeric LHCII and PSII-LHCII supercomplexes but still accumulates apo-328 

monomeric Lhcb proteins (not containing chlorophyll) and monomeric Lhcb containing 329 

chlorophyll a (Espineda et al., 1999, Havaux et al., 2007, Takabayashi et al., 2011). The absence 330 

of oligomeric PSII peripheral antenna in a soq1 mutant background abolishes the induction of 331 

additional quenching, therefore we conclude that qH occurs in the oligomeric peripheral antenna 332 

of PSII. Future study will explore the specific antenna protein(s) that are necessary for qH. Lipid 333 

composition is known to modulate LHCII aggregation state and function (Schaller et al., 2011). 334 

It is possible that LCNP-mediated modification of a hydrophobic molecule, such as a thylakoid 335 

membrane lipid, would change the conformation of LHCII and thus create a quenching site. 336 

Interestingly, a potential biochemical interaction between wheat (Triticum aestivum) LCNP with 337 

the lipid transfer protein 3 and a β-ketoacyl-acyl carrier protein synthase involved in fatty acid 338 
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synthesis was found by yeast-two-hybrid analysis (using dehydrated plant cDNA libraries) 339 

(Tardif et al., 2007). These potential interactions and their relevance for LCNP function will be 340 

subjects of further examination. 341 

 342 

Regulation of qH by SOQ1 343 

The suppressor screen revealed a genetic interaction between SOQ1 and LCNP: upon mutation 344 

of LCNP in a soq1 mutant background (soq1 lcnp), qH was no longer induced (Figure 2C). 345 

Furthermore, under cold and high light conditions, wild type exhibited Fm and Fo quenching in an 346 

LCNP-dependent manner but to a lesser extent than soq1 (Figures 5 and 6). These results 347 

demonstrate that LCNP is required for qH as discussed above and that the function of SOQ1 is to 348 

inhibit (quenching by) LCNP. Alternatively, SOQ1 could be involved in removing or recycling 349 

the quenching sites that are enabled by LCNP, but we do not favor this idea for several reasons. 350 

As LCNP is located in the thylakoid lumen (Levesque-Tremblay et al., 2009), it is a good 351 

candidate for interacting with the SOQ1 domains responsible for regulating qH, namely the 352 

thioredoxin-like and NHL-beta propeller domains (Brooks et al., 2013). A similar biochemical 353 

pathway is also suggested by the altered mobility of LCNP in the soq1 mutant (Figure 4). This 354 

altered mobility of approximately 1.5 kD is not affected by mutation Ala255Val and is not 355 

reversed by the addition of a reducing agent such as DTT. These results suggest that this is not a 356 

redox modification or that it is a stable modification (such as cysteine sulfinic/sulfonic acid or 357 

oxidized methionine) that cannot be reversed by DTT. The altered mobility of LCNP in soq1 358 

suggests that SOQ1 is required to reverse this slower migrating form. Whether the interaction 359 

between SOQ1 and LCNP is direct or indirect will be tested in the future.  360 

 SOQ1 is downregulated during drought-stress, as summarized by Noctor et al. (2014). 361 

This represents a possible way to alleviate the inhibition of LCNP during abiotic stresses by 362 

repressing the inhibitor. However, the soq1 mutation is recessive, which might mean that a low 363 

level of SOQ1 protein is sufficient for its function. This leads us to think that the repression of 364 

qH by SOQ1 might be more complex than a binary system in which less of the repressor means 365 

more active target. LCNP and SOQ1 genes are conserved among all land plants with sequenced 366 

genomes, including evergreens such as Norway spruce (Picea abies) (Nystedt et al., 2013), so it 367 

is possible that this quenching mechanism and its regulation are broadly conserved. 368 

 369 
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Physiological relevance of a ΔpH-independent quenching mechanism 370 

Research by Dall'Osto et al. (2005) provided evidence for a ΔpH-independent quenching 371 

mechanism in plants that was later termed qZ (Nilkens et al., 2010), because it relies on the 372 

presence of zeaxanthin. This mechanism is independent of PsbS and is based on the 373 

conformational change of (at least) the minor antenna protein CP26. In our study, after a cold 374 

and high light treatment, we observed a decrease in Fm (or NPQ level of ~3) in all genotypes 375 

regardless of the presence or absence of LCNP (Figure 6C and Supplemental Figure 3B middle 376 

panel). We measured the zeaxanthin content remaining after dark-acclimation and found high 377 

and similar levels of zeaxanthin and de-epoxidation states in all genotypes (Table 1, 378 

Supplemental Tables 3 and 4). Therefore, it is likely that some of this LCNP-independent NPQ 379 

level or decrease in Fm is due to qZ in addition to qI from photodamage and possibly other 380 

slowly relaxing processes. 381 

 LCNP-dependent NPQ does not depend on ΔpH, and this characteristic might provide a 382 

fitness advantage under specific environmental conditions. In Arabidopsis, we present evidence 383 

that qH is induced in wild type during cold plus high light stress (Figures 5, 6, 7). Dall'Osto et al. 384 

(2005) suggested that qZ could be responsible for part of the sustained ΔpH-independent 385 

quenching mechanism observed in overwintering evergreens (Verhoeven et al., 1999, Gilmore 386 

and Ball 2000). A highly efficient quenching is necessary to enable overwintering evergreens to 387 

withstand extended periods of high light and cold (Adams III et al., 2002, Öquist and Huner 388 

2003). We previously discussed the possibility that the SOQ1-related (Brooks et al., 2013) or 389 

LCNP-dependent qH further described here plays a role in this sustained form of NPQ. Tropical 390 

evergreens have also been shown to induce a sustained form of NPQ upon transition from shade 391 

to high light (Demmig-Adams et al., 2006), and it is likely that many plants need sustained 392 

quenching mechanisms to survive periods of extended light stress (Demmig-Adams and Adams 393 

2006). In the future, it would be interesting to test whether qZ or qH is the dominant form of 394 

energy dissipation in this sustained mode of photoprotection in other plant species. With the 395 

recent advances in gene editing technology in non-model organisms (Woo et al., 2015), knockout 396 

of LCNP in an evergreen species would be a direct way to test the contribution of LCNP to 397 

sustained photoprotection. 398 

 399 
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METHODS 400 

Plant material and growth conditions 401 

Wild-type Arabidopsis thaliana and the derived mutants studied here are of the Col-0 ecotype. 402 

Mutants npq4-1 (Li et al., 2000), soq1-1, soq1 npq4 glabrous (gl)1-1 (Brooks et al., 2013) and 403 

soq1-1 npq2-1 (Brooks 2012) were previously isolated in our laboratory. The lut2-2 (Pogson et 404 

al., 1996) mutant allele was crossed with soq1-1. We refer to the npq4-1 and soq1-1 mutant 405 

alleles as npq4 and soq1, respectively, because no other mutant alleles of these genes were used 406 

in this study. Mutant chlorina1-3 lhcb5 (Kim et al., 2009) was used as the source of the 407 

chlorina1-3 allele. Mutants soq1 npq4 gl1 chlorina1-4, soq1 npq4 gl1 chlorina1-5, soq1 npq4 408 

gl1 lcnp-2, soq1 npq4 gl1 lcnp-3 were generated in this study. The lcnp T-DNA insertion line 409 

SALK_133049C was provided by F. Ouellet (Université du Québec à Montréal). Plants were 410 

grown in soil (Sunshine Mix 4/LA4 potting mix, Sun Gro Horticulture Distribution) under a 411 

10/14 h light/dark photoperiod at 120 μmol photons
 
m

-2 
s

-1
, unless stated otherwise, at 21°C for 5 412 

to 6 weeks or on agar plates containing 0.5 x Murashige & Skoog medium (VWR Scientific 413 

95026-314) at 100 μmol photons
 
m

-2 
s

-1
 (continuous light) at 21°C and then transferred to soil. 414 

For the cold and high light treatment, seedlings, plants or detached leaves were placed for 6 h at 415 

6°C and at 1500 μmol photons
 
m

-2 
s

-1
 using a custom-designed LED panel built by JBeamBio 416 

with cool white LEDs BXRA-56C1100-B-00 (Farnell). Light bulbs used in the growth chambers 417 

were cool white (4100K) from Philips (F25T8/TL841 25W) for plants grown in soil and from 418 

General Electric (F17T8/SP41 17W) for seedlings grown on agar plates. 419 

 420 

Genetic crosses and genotyping primers 421 

Genetic crosses were done using standard techniques (Weigel and Glazebrook 2006). A Phire 422 

Plant Direct PCR kit (ThermoFisher Scientific F130) was used for genotyping with the dilution 423 

protocol. Genotyping of the soq1-1 allele was done either by sequencing of a 800 bp PCR 424 

product amplified with primers MDB74 forward (TAGGTGTGCCTACCAGCGAG) and 425 

MDB72 reverse (TGAGCCACCAGTGAGAATGTC) surrounding the point mutation, position 426 

G372 to A in mutant, or by amplifying a 248 bp product with dCAPS primers (Neff et al., 2002) 427 

AM145 forward (GAAGTGGTTTCTTTTGTACAATTCTGCA) and AM146 reverse 428 

(CAATACGAATAGCGCACACG), which is digested by PstI if it is a wild-type allele. To 429 

genotype the lcnp T-DNA allele, AM164 forward (LP) (CCGCTTTGACATTTACATTACG) 430 
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and AM165 reverse (RP) (TATAGCAATGTCGGCTCCAAC) were used with LBb1.3 to 431 

amplify a 569 bp product in wild-type (LP+RP), a 869 bp (with insert) product in lcnp 432 

(LBb1.3+RP) or both in heterozygous individuals according to the Salk Institute Genomic 433 

Analysis Laboratory T-DNA primer design tool. 434 

 435 

EMS mutagenesis and screening of suppressor mutants 436 

M2 seedlings were derived from mutagenesis of soq1 npq4 gl1 seeds with 0.24% (v/v) ethyl 437 

methanesulfonate (EMS). Suppressors of soq1 npq4 were screened based on their NPQ 438 

phenotype by chlorophyll fluorescence video imaging using an Imaging-PAM Maxi (Walz). For 439 

mutant screening, 60 to 80 seeds were plated per agar plate and 3-week-old seedlings were dark-440 

acclimated for 20 min prior to measurement. NPQ was induced by 1000 μmol photons
 
m

-2 
s

-1
 441 

(blue actinic light) for 10 min and relaxed in the dark for 10 min. 442 

 443 

Mutation mapping and identification by whole genome sequencing 444 

To identify the mutation of interest, the mutant #205 (soq1 npq4 gl1 lcnp-2) was crossed to the 445 

soq1 npq4 gl1 parental line, which was used to generate the EMS population. Plants displaying 446 

the mutant phenotype (low NPQ) in the F2 generation were identified and pooled for DNA 447 

extraction. Genomic DNA was extracted from F2 mutant plants from the cross soq1 npq4 gl1 x 448 

#205 (pool of 75 seedlings), soq1 npq4 gl1 (150 seedlings), and #252 M3 mutant pool (200 449 

seedlings) using a Gentra Puregene kit (Qiagen). Genomic DNA was submitted to the Functional 450 

Genomics Laboratory (UC Berkeley) for preparation of the sequencing libraries, which were 451 

sequenced at the Vincent J. Coates Genomics Sequencing Laboratory (UC Berkeley). The three 452 

samples were multiplexed and run with an unrelated sample in two lanes on an Illumina HiSeq 453 

2000/2500 to obtain 100 bp paired-end reads. The sequencing reads were mapped to the Col-0 454 

reference genome (TAIR) and SNPs were detected using the CLC Genomics Workbench 455 

software. The SNPs present in the soq1 npq4 gl1 background were subtracted from those 456 

identified in mutant #205 to identify SNPs likely to have been induced by this new round of 457 

EMS mutagenesis and therefore to be segregating in the mapping population. The SNPs were 458 

further filtered by coverage (between 20 and 200X), observed frequency (>25%), and mapping 459 

quality. The allelic frequency of each SNP in the pooled #205 mutant F2 was then plotted 460 

relative to the genomic position (Supplemental Figure 1) to identify the region showing linkage 461 
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to the causative mutation. The set of genes containing an amino-acid changing mutation within 462 

this region for the #205 pool was then compared to the genes containing mutations in the #252 463 

mutant. 464 

 465 

Chlorophyll fluorescence measurement 466 

Chlorophyll fluorescence was measured at room temperature from attached, fully expanded 467 

rosette leaves or leaf discs of same area using a Dual-PAM-100 (Walz) fluorimeter. Plants were 468 

dark-acclimated for 20 min and NPQ was induced by 1200 μmol photons
 
m

-2 
s

-1
 (red actinic 469 

light) for 10 min and relaxed in the dark for 10 min unless stated otherwise. Maximum 470 

fluorescence levels after dark-acclimation (Fm) and throughout measurement (Fm') were recorded 471 

after applying a saturating pulse of light. NPQ was calculated as (Fm - Fm')/Fm'. For the cold and 472 

high light experiments shown in Figures 5/6 and 7, fluorescence was acquired with an Imaging-473 

PAM Maxi from Walz and a JBeamBio fluorescence imaging setup (Johnson et al., 2009), 474 

respectively.  475 

 476 

Protein extraction and immunoblot analysis 477 

Thylakoids were isolated as described (Iwai et al., 2015) and solubilized at 70°C for 4 min in 60 478 

mM Tris HCl (pH 6.8), 2% SDS and 6% sucrose with or without 100 mM dithiothreitol (DTT). 479 

For immunoblots, samples were loaded by chlorophyll content on anyKD gels (BioRad), 480 

separated by SDS-PAGE, transferred in a semidry blotting apparatus at 0.8 mA cm
-2

 for 1 h to a 481 

PVDF membrane, blocked with 3% (w/v) nonfat dry milk, and incubated with the following 482 

antibodies. Rabbit-specific antibodies against a C-terminal peptide of SOQ1 483 

(TVTPRAPDAGGLQLQGTR) were produced and purified by peptide affinity by ThermoFisher 484 

and used at a 1:2000 dilution. Anti-LCNP antibody against recombinant protein (Levesque-485 

Tremblay et al., 2009) was provided by F. Ouellet (Université du Québec à Montréal) and used 486 

at a 1:2000 dilution. After incubation with HRP-conjugated secondary antibody, bands were 487 

detected by chemiluminescence with ECL substrate (GE Healthcare). 488 

 489 

Pigment extraction and analysis 490 

HPLC analysis of carotenoids and chlorophylls was done as previously described (Müller-Moulé 491 

et al., 2002). For the cold and high light treatments, pigments were extracted from the same 492 
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seedlings used in the fluorescence measurements shown in Figure 5 (two samples from different 493 

individuals per genotype per time point) or from the same plants used in the fluorescence 494 

measurements shown in Figure 6 (three samples from different individuals per genotype per time 495 

point). 496 

 497 

Autoluminescence imaging 498 

Lipid peroxidation was visualized in leaves by autoluminescence imaging (Havaux et al. 2006). 499 

Leaves were dark acclimated for 2 h, and the luminescence emitted from the spontaneous 500 

decomposition of lipid peroxides was captured by a highly sensitive liquid N2-cooled charge-501 

coupled device (CCD) camera, as previously described (Birtic et al., 2011). The images were 502 

treated using Image J software (NIH, USA).  503 

 504 

Lipid peroxidation analyses 505 

Leaves (approximately 0.5 g) were ground in an equivolume mixture of methanol/chloroform 506 

containing 5 mM Triphenyl Phosphine (PO3) and 1 mM 2,6-tert-butyl-p-cresol (BHT) (5 ml g
-1

 507 

fresh weight) and citric acid (2.5 ml g
-1

 fresh weight), using an Ultraturax blender. 15-HEDE was 508 

added as an internal standard to a final concentration 100 nmol g
-1

 fresh weight and mixed 509 

thoroughly. After centrifugation at 700 rpm and 4°C for 5 min, the lower organic phase was 510 

carefully taken out using a glass syringe and transferred into a 15 ml glass tube. The syringe was 511 

rinsed with approximately 2.5 ml chloroform and emptied into the tube containing the upper 512 

organic phase. The process was repeated and the lower layer was again collected and pooled with 513 

the first collected fraction. The solvent was evaporated under N2 gas at 40°C. The residues were 514 

recovered in 1.25 ml absolute ethanol and 1.25 ml of 3.5 N NaOH and hydrolyzed at 80°C for 30 515 

min. The ethanol was evaporated under N2 gas at 40°C for ~10 min. After cooling to room 516 

temperature, pH was adjusted to 4-5 with 2.1 ml citric acid. Hydroxy fatty acids were extracted 517 

with hexane/ether 50/50 (v/v). The organic phase was analyzed by normal-phase HPLC-UV, as 518 

previously described (Montillet et al., 2004). Hydroxyoctadecatrienoic acid (HOTE) isomers (9-, 519 

12-, 13- and 16-HOTE) derived from the oxidation of the main fatty acid, linolenic acid, were 520 

quantified based on the 15-HEDE internal standard. 521 

 522 

Accession Numbers 523 
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Sequence data from this article can be found in the Arabidopsis Genome Initiative under 524 

accession numbers At1g56500 (SOQ1), At3g47860 (previously named CHL, renamed LCNP), 525 

At1g44575 (PsbS), At1g44446 (CAO). Illumina HiSeq data can be found in the Sequence Read 526 

Archive (https://www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA420599 and 527 

BioSample numbers SAMN08116650 (soq1 npq4 gl1), SAMN08116641 (#205 F2) and 528 

SAMN08116657 (#252 M3). 529 

530 

SUPPLEMENTAL DATA 531 

Supplemental Figure 1. The causative mutation in mutant #205 is on chromosome 3.  532 

Supplemental Figure 2. LCNP protein mobility is altered in the soq1 mutant background. 533 

Supplemental Figure 3. Cold and low light treatment does not induce qH. 534 

Supplemental Figure 4. Fm vs Fo values before and after cold and high light treatment in 535 

detached leaves. 536 

Supplemental Figure 5. The organization of the photosynthetic complexes upon cold and high 537 

light treatment is similar among genotypes. 538 

Supplemental Figure 6. qH is photoprotective. 539 

Supplemental Figure 7. qH can occur in the absence of violaxanthin. 540 

Supplemental Figure 8. qH can occur in the absence of lutein. 541 

Supplemental Figure 9. qH can occur in the absence of both zeaxanthin and lutein. 542 

Supplemental Table 1. Sequencing and reads mapping summary.  543 

Supplemental Table 2. Summary of the identified mutations within the mapped region. 544 

Supplemental Table 3. Pigment content in leaves from seedlings. 545 

Supplemental Table 4. Pigment content in detached leaves. 546 
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Table 1. Pigment content in detached leaves. 

Pigments were extracted from leaves, of plants grown in standard conditions, without or with exposure to cold and high light 

conditions (5 h at 6°C and 1,500 µmol photons m-2 s-1) and dark-acclimated for 10 or 40 min respectively. Data represent 

means +/- SD (n=3 leaves from different plant individuals). 

Table 1. Pigment content without or with cold and high light treatment

Genotype Col-0 soq1 lcnp/LCNP soq1 lcnp soq1 lcnp npq4 soq1 npq4 soq1 npq4 lcnp-2 soq1 npq4 lcnp-3 npq4 lcnp-2

Total chlorophyll (nmol cm-2) 31.0 ± 0.62 32.6 ± 3.3 32.5 ± 1.4 31.5 ± 1.2 30.1 ± 4.5 34.0 ± 2.3 31.9 ± 0.8 29.8 ± 1.0 37.9 ± 3.6 38.9 ± 8.6

Chlorophyll a/b 2.66 ± 0.04 2.62 ± 0.11 2.64 ± 0.03 2.68 ± 0.07 2.71 ± 0.14 2.67 ± 0.08 2.74 ± 0.03 2.69 ± 0.06 2.59 ± 0.06 2.67 ± 0.02

(A+Z)/(V+A+Z) 0.04 ± 0.01 0.04 ± 0 0.05 ± 0.01 0.02 ± 0.02 0.05 ± 0 0.04 ± 0 0.06 ± 0.02 0.07 ± 0.02 0.08 ± 0.01 0.07 ± 0.02

Genotype Col-0 soq1 lcnp/LCNP soq1 lcnp soq1 lcnp npq4 soq1 npq4 soq1 npq4 lcnp-2 soq1 npq4 lcnp-3 npq4 lcnp-2

Total chlorophyll (nmol cm-2) 25.7 ± 1.3 31.7 ± 5.3 25.2 ± 2.0 26.4 ± 1.1 29.0 ± 3.4 27.8 ± 4.8 26.7 ± 2.0 27.5 ± 4.3 29.6 ± 3.8 33.8 ± 4.7

Chlorophyll a/b 3.05 ± 0.21 3.15 ± 0.22 3.11 ± 0.12 2.77 ± 0.01 2.79 ± 0.04 2.98 ± 0.11 2.98 ± 0.23 2.92 ± 0.07 2.79 ± 0.14 2.76 ± 0.06

(A+Z)/(V+A+Z) 0.78 ± 0.03 0.71 ± 0.07 0.70 ± 0.01 0.71 ± 0.02 0.68 ± 0.03 0.73 ± 0.05 0.66 ± 0.09 0.69 ± 0.10 0.71 ± 0.07 0.62 ± 0.06

without treatment + 10 min dark acclimation

cold and high light treatment + 40 min dark acclimation
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 770 

Table 1. Pigment contents in detached leaves. Pigments were extracted from leaves, of plants 771 

grown in standard conditions, without or with exposure to cold and high light conditions (5 h at 772 

6°C and 1500 μmol photons m
-2

 s
-1

) and dark-acclimated for 10 or 40 min, respectively. Data 773 

represent means +/- SD (n=3 leaves from different plant individuals). 774 

 775 

FIGURE LEGENDS 776 

 777 

Figure 1. qH requires the PSII peripheral antenna. A) NPQ kinetics of npq4, soq1 npq4, and 778 

strict suppressors #26 and #42. Plants were grown at 120 μmol photons
 
m

-2 
s

-1
, induction of NPQ 779 

at 1200 μmol photons
 
m

-2 
s

-1 
(white bar) and relaxation in the dark (black bar). B) HPLC traces 780 

showing lack of chlorophyll b in mutants #26 and #42 (black arrow) after 1 h high light 781 

treatment (1000 μmol photons
 
m

-2 
s

-1
) of detached leaves (pigments were extracted from same 782 

leaf area). N, neoxanthin; V, violaxanthin; A, antheraxanthin; Z, zeaxanthin; L, lutein; Chl, 783 

chlorophyll. C) NPQ kinetics of chlorina1-3 and soq1 chlorina1-3. The soq1 chlorina1 mutant 784 

was identified among the F2 progeny of the cross soq1-1 x chlorina1-3. Data represent means +/- 785 

SD (n=4 individuals). Plants were grown at 20 μmol photons
 
m

-2 
s

-1
, induction of NPQ at 2000 786 

μmol photons
 
m

-2 
s

-1 
(white bar) and relaxation in the dark (black bar). A chlorina1 mutant has a 787 

smaller antenna size and one could argue that qH is not observed because light conditions are 788 

insufficient to trigger it in this mutant context. Lowest growth and highest induction light 789 

intensities were therefore chosen to maximize light differential. soq1 NPQ kinetics (standard 790 

conditions, n=3 individuals) is shown for reference. 791 

 792 

Figure 2. qH requires the plastid lipocalin, LCNP. A) NPQ kinetics of npq4, soq1 npq4, strict 793 

suppressors #205 and #252, F1 from cross soq1 npq4 x #205 and from cross #205 x #252. Data 794 

represent means +/- SD (n=3 individuals). B) Representative HPLC traces from soq1 npq4, 795 

mutants #205 and #252 grown at 120 μmol photons
 
m

-2 
s

-1
. Pigments were extracted from same 796 

leaf area (n=3 individuals). Total chlorophylls per area was compared among genotypes by 797 

Student’s t-test with P<0.01; no significant difference was found. N, neoxanthin; V, violaxanthin; 798 

A, antheraxanthin; L, lutein; Chl, chlorophyll. C) NPQ kinetics of Col-0, soq1, lcnp, soq1 lcnp 799 

and soq1/soq1 lcnp/LCNP. The soq1 lcnp mutant was identified among the F2 progeny of the 800 
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cross soq1-1 x lcnp-1 (T-DNA knock-out mutant). Data represent means +/- SD (n=3 for Col-0 801 

and soq1, n=6 for lcnp, n=4 F2 individuals soq1/soq1 lcnp/LCNP and n=7 F3 individuals soq1 802 

lcnp). Growth at 120 μmol photons
 
m

-2 
s

-1
, induction of NPQ at 1200 μmol photons

 
m

-2 
s

-1 
(white 803 

bar) and relaxation in the dark (black bar). 804 

 805 

Figure 3. Schematic representation of LCNP protein with positions of the mutations. 806 

Predicted chloroplast transit peptide (cTP) and lumen transit peptide (lTP) based on software 807 

prediction for cTP and mass spectrometry data (from PPDB) for lTP suggesting a mature size of 808 

29 kDa; black squares, “structurally conserved regions” of the lipocalin fold; diamonds, 809 

conserved cysteines; adapted from (Charron et al., 2005). Positions of three mutant alleles are 810 

depicted: T-DNA knock-out (KO) mutant (lcnp-1) described in (Levesque-Tremblay et al. 2009), 811 

LCNP-Ala255Val (lcnp-2) and splice site (lcnp-3) mutants from suppressor mutants #205 and 812 

#252, respectively, isolated in this study. 813 

 814 

Figure 4. LCNP protein mobility is altered in the soq1 mutant background. Proteins were 815 

separated by SDS-PAGE and analyzed by immunodetection with antibodies against LCNP, 816 

SOQ1 or ATPb. Samples were loaded at the same chlorophyll content. Coomassie blue and/or 817 

ATPb are shown as loading controls. A818 

grown under standard conditions (3.5 μg chlorophyll). Molecular weights (kD) are indicated 819 

according to the migration of Precision Plus Protein Standards markers from Bio-Rad. B) 820 

821 

and 1500 μmol photons
 
m

-2 
s

-1 
(5 μg chlorophyll).♮Non-specific band detected by the anti-LCNP 822 

antibody. 823 

 824 

Figure 5. qH occurs under cold and high light conditions (seedlings). A) Images of seedlings 825 

and false-colored images of B) minimum fluorescence (Fo) and C) maximum fluorescence (Fm). 826 

Left panel, 24-day-old seedlings grown at 120 μmol photons
 
m

-2 
s

-1
, 21°C immediately before 827 

treatment; Right panel, after a cold and high light treatment for 6 h at 6°C and 1500 μmol 828 

photons
 
m

-2 
s

-1
. Seedlings were dark-acclimated for 10 min before fluorescence measurement to 829 

relax qE. In B) and C) right panel, color scale is expanded to better visualize differences; see 830 
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Supplemental Figure 3 for non-expanded color scale image of Fm. Average values and standard 831 

deviation are given with n=9 individuals for each genotype. 832 

 833 

Figure 6. qH occurs under cold and high light conditions (whole plants and detached 834 

leaves). Plants and leaves were dark-acclimated for 10 min before fluorescence measurement to 835 

relax qE. False-colored image of maximum fluorescence (F
m

) from A) 7-week-old plants and B) 836 

detached leaves from 6-week-old plants, after a cold and high light treatment for 5 h at 6°C and 837 

1500 μmol photons
 
m

-2 
s

-1
. C) NPQ values from detached leaves experiment (see representative 838 

image shown in B) calculated as (F
m

 before treatment – F
m

 after treatment)/(F
m

 after treatment). 839 

Data represent means +/- SD (n =3 leaves from different plant individuals). The lcnp-2 allele 840 

accumulates lower levels of mutated LCNP-Ala255Val; the lcnp and lcnp-3 alleles accumulate 841 

no LCNP protein. 842 

 843 

Figure 7. qH is photoprotective. Leaves were exposed to cold and high light treatment for 3 h 844 

(A, B, D, E, F) or 6 h (C) at 6°C and 1500 μmol photons
 
m

-2 
s

-1
. Representative images of (A, D) 845 

maximum chlorophyll fluorescence, Fm, after a 10 min dark acclimation to relax qE and (B, E) 846 

autoluminescence originating from lipid peroxides. This time point (3 h instead of 6 h) was 847 

chosen and lcnp was measured separately to prevent saturation and drowning out of the 848 

luminescence signal between genotypes with lower lipid peroxidation levels than Col-0. Camera 849 

settings in (B) were adjusted to better visualize differences. C, F) Quantification of lipid 850 

peroxidation expressed as HOTE (hydroxyoctadecatrienoic acid) level. The 6 h time point in (C) 851 

was chosen for consistency with the time point used in Figure 5. Data represent means +/- SD 852 

(n=3 samples of pooled leaves from six individuals). Asterisks mark significant difference 853 

relative to Col-0 at P < 0.05 by Student's t-test. 854 
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Figure 1. qH requires PSII peripheral antenna.  

A) NPQ kinetics of npq4, soq1 npq4, and strict suppressors #26 and #42. Plants were grown at 120 µmol photons m-2 s-1, induction of NPQ at 1200 µmol photons m-2 s-1 (white bar) and relaxation in the dark (black bar). B) HPLC traces showing lack of chlorophyll b in mutants #26 and #42 (black arrow) after 1 h high light treatment (1000 µmol photons m-2 s-1) of detached leaves (pigments were extracted from same leaf area). N, neoxanthin; V, violaxanthin; A, antheraxanthin; Z, zeaxanthin; L, lutein; Chl, chlorophyll. C) NPQ kinetics of chlorina1-3 and soq1 chlorina1-3. The soq1 chlorina1 mutant was identified among the F2 progeny of the cross soq1-1 x chlorina1-3. Data represent means +/- SD (n=4 individuals). Plants were grown at 20 µmol photons m-2 s-1, induction of NPQ at 2000 µmol photons m-2 s-1 (white bar) and relaxation in the dark (black bar). A chlorina1 mutant has a smaller antenna size and one could argue that qH is not observed because light conditions are insufficient to trigger it in this mutant context. Lowest growth and highest induction light intensities were therefore chosen to maximize light differential. soq1 NPQ kinetics (standard conditions, n=3 individuals) is shown for reference. 
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Figure 2. qH requires the plastid lipocalin, LCNP. 

A) NPQ kinetics of npq4, soq1 npq4, strict suppressors #205 and #252, F1 from cross soq1 npq4 x #205 and from cross 
#205 x #252. Data represent means +/- SD (n=3 individuals). B) Representative HPLC traces from soq1 npq4, mutants #205 and #252 grown at 120 µmol photons m-2 s-1. Pigments were extracted from same leaf area (n=3 individuals). Total chlorophylls per area was compared among genotypes by Student’s t-test with P<0.01, no significant difference was found. N, neoxanthin; V, violaxanthin; A, antheraxanthin; L, lutein; Chl, chlorophyll. C) NPQ kinetics of Col-0, soq1, lcnp, soq1 

lcnp and soq1/soq1 lcnp/LCNP. The soq1 lcnp mutant was identified among the F2 progeny of the cross soq1-1 x lcnp-1 (T-DNA knock-out mutant). Data represent means +/- SD (n=3 for Col-0 and soq1, n=6 for lcnp, n=4 F2 individuals soq1/soq1 

lcnp/LCNP and n=7 F3 individuals soq1 lcnp). Growth at 120 µmol photons m-2 s-1, induction of NPQ at 1200 µmol photons m-2 s-1 (white bar) and relaxation in the dark (black bar).   
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Figure 3. Schematic representation of LCNP protein with positions of mutations. 

Predicted chloroplast transit peptide (cTP) and lumen transit peptide (lTP) based on software prediction for cTP and mass 

spectrometry data (from PPDB) for lTP suggesting a mature size of 29 kDa; black squares, “structurally conserved regions” 

of the lipocalin fold; diamonds, conserved cysteines; adapted from (Charron et al., 2005). Positions of three mutant alleles 

are depicted: T-DNA knock-out (KO) mutant (lcnp-1) described in (Levesque-Tremblay et al. 2009), LCNP-Ala255Val 

(lcnp-2) and splice site (lcnp-3) mutants respectively from suppressor mutants #205 and #252 isolated in this study. 
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Figure 4. Altered LCNP protein mobility in soq1 mutant background. 

Proteins were separated by SDS-PAGE and analyzed by immunodetection with antibodies against LCNP, SOQ1 or ATPb. 

Samples were loaded at same chlorophyll content. Coomassie blue and/or ATPb are shown as loading controls. A) Isolated 

thylakoids +/- 200 mM DTT from plants grown under standard conditions (3.5 μg chlorophyll). Molecular weights (kD) are 

indicated according to the migration of the precision plus protein standards marker from Bio-Rad. B) Isolated thylakoids (+ 

100 mM DTT) from plants treated with cold and high light for 6 h at 6°C and 1500 μmol photons m-2 s-1 (5 μg chlorophyll). 

♮ Non-specific band detected by the anti-LCNP antibody. 
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Figure 5. qH occurs in cold and high light conditions (seedlings). 

A) Images of seedlings and false-colored images of B) minimum fluorescence (Fo) and C) maximum fluorescence (Fm). 

Left panel, 24-day-old seedlings grown at 120 μmol photons m-2 s-1, 21°C immediately before treatment; Right panel, after 

a cold and high light treatment for 6 h at 6°C and 1500 μmol photons m-2 s-1. Seedlings were dark-acclimated for 10 min 

before fluorescence measurement to relax qE. In B) and C) right panel, color scale is expanded to better visualize 

differences, see Supplemental Figure 3 for non-expanded color scale image of Fm. Average values and standard deviation 

are given with n=9 individuals for each genotype.  
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Figure 6. qH occurs in cold and high light conditions (whole plants and detached leaves). 

Plants and leaves were dark-acclimated for 10 min before fluorescence measurement to relax qE. False-colored image of 

maximum fluorescence (Fm) from A) 7-week-old plants and B) detached leaves from 6-week-old plants, after a cold and 

high light treatment for 5 h at 6°C and 1500 μmol photons m-2 s-1. C) NPQ values from detached leaves experiment (see 

representative image shown in B) calculated as (Fm before treatment – Fm after treatment)/(Fm after treatment). Data 

represent means +/- SD (n =3 leaves from different plant individuals). lcnp-2 allele accumulates lower level of mutated 

LCNP-Ala255Val; lcnp and lcnp-3 alleles accumulate no LCNP protein. 



0

10

20

30

40

50

60

70

H
O

T
E

 (
n
m

o
l 
g
–

1
 F

.W
.)

 

low 

Fm 

high 
A 

Col-0        soq1      LCNP OE              B 
high 

low 

low 

C 

D 

Col-0         lcnp       E 
high 

low 

Col-0        soq1       LCNP OE   Col-0         lcnp    

F 

0

5

10

15

20

25

30

35

40

45

H
O

T
E

 (
n
m

o
l 
g
–

1
 F

.W
.)

 

* 

Fm 

high 

* 

* 

Figure 7. qH is photoprotective. 

Leaves were exposed to a cold and high light treatment for 3 h (A, B, D, E, F) or 6 h (C) at 6°C and 1500 μmol photons m-2 

s-1. Representative images of (A, D) maximum chlorophyll fluorescence, Fm, after a 10 min dark acclimation to relax qE 

and (B, E) autoluminescence originating from lipid peroxides. We chose this time point (3 h instead of 6 h) and measured 

lcnp separately to prevent saturation and drowning out of luminescence signal between genotypes with lower lipid 

peroxidation level than Col-0. Camera settings in (B) were adjusted to better visualize differences. C, F) Quantification of 

lipid peroxidation expressed as HOTE level. The 6 h time point in (C) was chosen for consistency with the time point used 

in Figure 5. Data represent means +/- SD (n=3 samples of pooled leaves from six individuals). Asterisks mark significant 

difference relative to Col-0 at P < 0.05 by Student's t-test.  
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