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Abstract—Our society depends heavily on the electric power
infrastructure. To ensure its reliability, key power grid compo-
nents such as transformers are extensively monitored for signs
of failures and errors. This work concentrates on a type of event
known as the partial discharge (PD) because it is the symptom
of insulation weakness, the most common cause of transformer
failures. More specifically, our work is to locate the position
of a partial discharge to provide information for preventive
maintenance. Our method utilizes the information from a set of
ultra-high frequency (UHF) sensors inside the transformer, and
proceeds in two steps: first determine the signal arrival time and
then locate the position based on time differences. To determine
the arrival time, we develop a convolutional filtering method
based on the Savitzky-Golay filter. To provide accurate locations,
we simulate the electromagnetic wave propagation using finite-
difference time-domain (FDTD) to generate a reference table of
the travel time from each FDTD mesh point to the sensors.

We exercise our method using two sets of UHF measurements
with different signal to noise ratios. In both cases, our method
provides more accurate locations than other methods. The
difference is particularly prominent when the signal is weak. With
weak signals, the best existing method, the cumulative energy
method, was only able to predict the PD location within 300 mm
of the known sources in 13% of the test cases, while our method
is correct in 48% of the test cases.

I. INTRODUCTION

Power transformers are the most important and expensive

elements of a nation’s electric power infrastructure. Although

the reliability of transformers has increased over time, when

a transformer does fail, it can have severe consequence for

the power grid users and operators. For example, users may

suffer days or even weeks of power outage, while the grid

operator faces significant financial penalties. Extensive online

diagnostic systems have been developed to detect and prevent

such failures [1]. This work focuses on analyzing data pro-

duced from one of these diagnostic systems to locate an early

warning sign of a common fault.

Transformer failure is usually triggered by external events

such as lightning strikes, switching transients, and short-

circuits. However, susceptibility to these events is usually due

to some incipient weakness in the insulation system. The

transformer insulation strength can degrade to the point that it

cannot withstand system events such as short-circuit faults or

transient over-voltages [2], which leads to a type of internal

arcing event known as partial discharge (PD). Figure 1 illus-

trates the causes of failure in transformers in Korea over the

Fig. 1. Failure Occurence of Transformers Over Last 10 years

last 10 years [3]. Insulation failure is the most frequent cause at

35.7%. Detecting and locating PD events would allow owners

and operators of transformers to take appropriate actions to

avoid unexpected failures. Such preventive measures could

also protect other equipment connected to the transformers,

such as Gas Insulation Switchgear (GIS) and switchboards in

the substation, which are also expensive components of the

electric power grid.

PD occurs within transformers where the electric field

exceeds the local dielectric strength of the insulation. Although

the PD may initially be quite small, if left unchecked, the dam-

aged area can grow, eventually leading to electrical breakdown.

This has motivated the development of many preventive diag-

nosis and monitoring tools to assess the internal condition of a

transformer [4]. One of the best know monitoring techniques is

Dissolved Gas Analysis (DGA), which is routinely employed

to detect internal electrical discharge in power transformers.

DGA can provide some information about the nature and

severity of the PD, but not the location needed for remedial

actions [5].

Several methods have been developed for PD localization,

including transformer winding modeling, acoustic methods,

and ultra-high frequency (UHF) sensors. The transformer

winding models are sensitive to weak PD activities, but they

can only predict the turn number in which the PD occurs

and perform 1D localization [6], [7]. Using the acoustic

method, 3D localization is possible; however, this method has

less sensitivity to weak PDs and those that occur inside the

winding [8]. The UHF sensors are sensitive to weak PDs both

inside and outside of the winding. They can also predict the PD
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location in 3D coordinates [9]. These sensors can detect UHF

electromagnetic (EM) waves of varying frequencies (0.3 GHz

- 3.0 GHz). Additionally, these UHF sensors can be installed

inside transformer walls, which act as a Faraday cage to protect

the UHF sensors from external noise [10]. Thus, UHF sensors

are considered the most effective at locating PD positions.

Due to the different characteristics of the various materials

used in the transformer, such as the dielectric constant and

losses, EM waves will arrive at the sensors with different

time delays and levels of attenuation. This creates significant

challenges in locating the source of a PD event. Like most

previous approaches, we use the time difference of arrival

(TDOA) to locate the PD source. However, we have a more

effective way to determine the signal arrival time and have

a location method that takes into account the details of the

transformer involved.

When a signal first arrives at a sensor, it is buried among the

background noise. There are a number of different approaches

that have been published [11]; however, we believe they are not

robust enough. To more accurately determine the arrival time,

we studied a number of different approaches and developed a

new filter-based approach that works much better than others.

Because a transformer has a large amount of metal in-

side, the electromagnetic waves travels in complex paths. To

accurately locate the source of a PD event, we decide to

use a reference table of travel times generated from detailed

finite-difference time-domain (FDTD) simulations. We match

observed time differences with the simulated values in the

reference table to determine the PD location. This approach

requires a reference table for each model of transformer.

However, since there are relatively small number of different

models, the effort required to generate these reference tables

should be modest compared to the potential savings from

prevention of transformer failures.

We exercise the methods using a set of sensor measurements

from lab-generated PD events, where the general locations

of the PD sources are known. This allows us to test the

algorithms on real measurement data, whereas most of the

previous studies used only synthetic data. Tests confirm that

our method for determining the arrival time is indeed more

accurate, and the resulting PD locations are also more accurate.

In the remainder of this paper, we present related works

in Section II, and describe methods used for this study in

Section III. We go over experimental results in Section IV,

and discuss parameters and improvements for these methods in

Section V. The conclusion and future work are in Section VI.

II. RELATED WORKS

This work focuses on locating the position of a PD source

using UHF sensor data. We briefly describe the UHF sensors,

the work on determining the arrival time from sensor data, and

an FDTD method for generating the reference table of arrival

times used to determine the PD locations. We also use this

opportunity to accentuate the distinctiveness of our approach.

The UHF PD detection technique has better accuracy due

to lower signal damping as well as lower possibility of

external interference since the sensors are shielded by the

transformer walls. UHF sensors have also been shown to be

capable of detecting PDs in transformer oil under DC voltage

conditions [12] and locating PD sources inside transformer

windings [13]. However, the challenge of PD detection circuits

is the design of signal interpretation circuits and proper

sensors (antennas) capable of signal detection in the broadband

range. There are many types of UHF sensors that can detect

electromagnetic waves radiated from PD sources. The general

types of UHF PD sensors are disc and spiral, monopole and

conical types [14].

Accurately locating the source of PDs using UHF sensors

is an active reserarch topic [15]. A key step in this work is to

calculate the arrival time of signal at each sensor. The state

of art in determining the arrival time include the cumulative

energy method [16] and the energy criterion [11]. In this

work, we develop a method using the Savitzky-Golay filter

to accentuate the signal and a threshold to detect the signal

arrival. Tests show that our method is able to better preserve

features.

The Savtizky-Golay filter has been used for saturation

detection [17]. In our case, we use it to handle noisy signals

to improve detection robustness. In addition, we only use the

Savitzky-Golay filter to find a rough signal arrival, which

we then refine using a moving average since the resulting

window is not as sensitive to smoothing. Our study presents an

improved signal timing method coupled with a refined lookup

method using FDTD in order to localize PDs.

As in previous methods, we use the time difference of arrival

(TDOA) to locate the PD source [15], [18]. However, our

PD localization method takes into account the actual structure

of the transformer by using a reference table generated from

FDTD simulations. We select the FDTD mesh point corre-

sponding to the time differences with the minimum Euclidean

distance from the time differences of our signal timings.

The FDTD technique is the state of the art method for

modeling the propagation of electromagnetic waves inside

transformers. In 1966, Yee [19] proposed a technique to solve

Maxwell’s curl equations using the FDTD technique. It is

specifically designed to model the propagation of electromag-

netic transients and their interactions with complex metallic

structures inside transformers. The FDTD formulation is a

convenient method for solving electromagnetic field problems.

FDTD, which is widely applied to the field of electromagnetic

computation, can be used to simulate the electric and magnetic

fields that are measured by sensors. For example, the modeling

of PDs is outlined in [20], while the modeling of a UHF

spiral sensor using the FDTD method was proposed in [21].

The intensity of electric fields generated by PD sources in

dielectric materials was investigated using FDTD modeling

in [22]. FDTD simulation has also been applied to study the

propagation characteristics of electromagnetic waves caused

by PD in GIS [23]. FDTD computes the voltage at each sensor

at each time step. The arrival time at a sensor is calculated

using energy criterion [11], the best known timing method.

In this study, FDTD simulations are used to generate a table
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Fig. 2. Raw Data from PD2 Channel 1

of arrival time at the sensors, where each row of the table

corresponds to a PD event at a given mesh point. We use

the differences in arrival time at the sensors to look up the

source position of a PD event. Note that we could improve

both spatial and temporal resolutions of FDTD simulations to

create a reference table with more accurate arrival time values.

In this work, due to runtime constraints, the FDTD mesh

was calculated with 300 mm between neighboring points. The

timestep sizes used by FDTD are about 0.006 - 0.009 ns, which

are small enough to model 3GHz UHF waves.

III. METHODS

The goal of this study is to use the signals from the four

sensors in the transformer to determine the source of the partial

discharge (PD). This process is broken up into two steps:

• Identify the arrival time of the signals in the sensor data

• Localize the partial discharge using the signal timings

We use sample data collected from a test transformer

with two possible PD locations, designated PD1 and PD2.

Within our test transformer, partial discharges are triggerred

in laboratory conditions and signals were collected from these

triggered events. At each PD location, there are 26 possible

specific failure points. There are 22 signal samples for PD1

and 23 samples for PD2. Each sample includes four sets of

1000 data points, with one set from each of four sensors. A

channel is the data for one sensor, and a signal refers to the

set of four channels. Each data point represents the voltage

detected by the sensor in increments of 0.4 ns. Using these

two sets of data, we try to locate the coordinates of PD1 and

PD2.

In addition to the emulated PD data, we also validate our

method with simulated FDTD data based on two other trans-

formers, designated 3MVA and TL1965. This data simulates

a PD occurring at each of the FDTD indices and records the

voltage detected at each sensor over a time period of 50 ns.

Signal Timing

We examine various methods to pinpoint the arrival time

of the signal in the sensor data. This is the point where the

PD signal is stronger than background noise. The primary

challenge is the low signal to noise ratios (SNR) present in

certain sensors, since the noise obscures the arrival of the

signal.

Fig. 3. Raw Data from PD2 Channel 4

Figures 2 and 3 show the sensor data for which we identify

the arrival of the signal. Figure 2 is an example of data with

a high SNR, making it simple for any timing method to find

the signal. This data, designated channel 1 (CH1), is obtained

from one of the four sensors, which is fairly close to the PD

source, resulting in the stronger signal. However, in Figure 3,

the signal is obscured by high levels of noise. This data is

channel 4 (CH4), which is obtained from a sensor further away

from the PD source and likely blocked by internal structures.

In our initial experiments, we tested several methods, in-

cluding a simple threshold, an envelope, analyzing the data

spread, noise cancellation, moving average threshold, and

frequency comparison, all of which were not consistently

successful due to the effect of the high levels of noise. We

also tried filtering the data first with a lowpass filter to remove

noise, but it was not sufficient to improve these methods.

We compared these results against the results of the existing

cumulative energy method [16], which is a standard method

for determining signal arrival times. We find the knee point in

the cumulative energy curve using the Kneedle method [24].

We also compared these methods with the energy criterion

method [11], which had almost identical results to those of

the cumulative energy method.

To improve the signal timing, we use the Savitzky-Golay
filter [25] to improve the SNR, allowing for more robust

detection in noisy data [17]. The Savitzky-Golay filter (SG

filter) smooths data through convolution, by fitting windows of

the signal to a low degree polynomial using least squares. The

solutions to the least squares equations are applied to the data

subsets to estimate the smoothed signal. Compared to other

filters such as a moving average, this filter preserves features

better, making it easier to find the signal arrival with threshold

methods. We use the Savitzky-Golay filter with a threshold

to define a window for the arrival time. This threshold is

determined based on the mean and standard deviation of the

noisy data, which is the first half of the window.

Once we identify this initial window, which usually includes

only one significant peak, we can use a moving average to

further eliminate noise and refine our initial estimate to find the

signal arrival time. In the original signal, the moving average

would reduce the amplitude of peaks too much, making it

difficult for a threshold to find the signal. However, this is not

an issue within the window since the threshold only has one

peak to identify.
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Fig. 4. SG Filtered Data from PD2 Channel 1

Fig. 5. SG Filtered Data from PD2 Channel 4

Figures 4 and 5 show the improved noise reduction effect

of the SG filter over the lowpass filter. Even in the worst case

(channel 4), the signal has double the amplitude of the noise

when using the SG filter method.

Partial Discharge Localization

We explore two methods of localizing the partial discharge.

The first method is multilateration, solving four quadratic

equations for four variables - the x, y, and z coordinates

as well as the origin time. The second method is finite-

difference time-domain (FDTD), which simulates the behavior

of electromagnetic signals in the transformer.

Multilateration: We define 4 quadratic equations

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 − (ce(t− ti))

2 = 0

ce = c/
√
1.7

x, y, and z are the coordinates of the PD source, and t is the

time the signal originates. ce is the effective speed of light

(c) traveling through the oil in the transformer. This value is

selected based on the relative permittivity of the oil medium.

For i = 1, 2, 3, 4, xi, yi, and zi are the coordinates of the

sensors, and ti is the time that the signal reaches sensor i.
ti is found using the signal timing method, and the sensor

coordinates are known. From these equations, we solve for x,

y, z, and t. In our experiments, we solve for the PD source

PD onset 

t1 

S2 S3 S4 

t12 

 t13 
 t14 

S1 

mV(t) 

Time (t) 

Fig. 6. Signal arrival times in reference to unknown PD onset

UHF sensor #4 

UHF sensor #3 

UHF sensor #2 UHF sensor #1 

Fig. 7. Model of power transformer and position of UHF sensors

using a derivative-free spectral residual method [26]. While

the localized PD is able to differentiate between PD1 and

PD2, small errors in the timing greatly affect the identified

coordinates. In addition, the signals do not actually travel in

straight lines due to the internal structure of the transformer.

FDTD Reference Table: To account for the path of the

signals, we use FDTD simulation. The transformer is divided

into 300 mm mesh points, and a PD signal is simulated from

each point. The time that it takes to travel from each mesh

point to each of the four sensors is recorded, and using these

four times, we calculate three time differences to compare

our signal timings against. These time differences are the

differences between three of the times and one base time as

shown in Figure 6.

To simulate the time difference, we use the CST Microwave

Studio software on a one-phase 750MVA power transfomer

with a 7000 mm x 2000 mm x 4500 mm tank. Figure 7 shows

the simulation model and sensing locations for calculating the

time differences. As shown in Figure 7, since the installation

locations of the UHF sensors are restricted, the sensors were

forced into a close arrangement. As a PD source, a dipole

antenna with a standardized voltage source (IEC 60270) was

placed in pre-defined coordinates.

Since sensor 2 consistently provides low noise data in our

experiments, we use the sensor 2 timing as the base for the

time differences. We look up time differences between sensors

from the FDTD simulation, and compare our signal timings to

determine the closest mesh point in the transformer to the PD
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Fig. 8. PD Localization Procedure Flowchart

Fig. 9. Finding Outliers Procedure Flowchart

source. The FDTD mesh point whose time differences have

the lowest root mean squared error (RMSE) from the time

differences of the signal timings is selected as the PD source.

Figure 8 shows the entirety of the PD localization procedure,

which consists of finding the timing for each channel of the

signal and then using those timings to look up the nearest

FDTD mesh point based on RMSE. This procedure is then

repeated on each of the signals.

DBSCAN Outliers

Since we have a collection of about 20 samples for each

PD, we use density-based spatial clustering of applications

with noise (DBSCAN) [27] to detect outlier samples that may

have some variance. DBSCAN labels points as either part

of a cluster or noise based on a parameter of the number

of points to define a cluster and the distance of the cluster.

This algorithm clusters points without needing the number of

clusters as an input. Using DBSCAN, we cluster the localized

PD points, and remove any that are farther than 1000 mm from

the largest cluster. This distance is selected to provide a light

filter to remove extreme cases and not significantly affect the

results of our predictions.

Figure 9 shows how multiple signals are handled. Each

signal is used to find a PD location using its four channels. The

resulting locations are filtered using DBSCAN to determine

which signals are outliers. The outliers are not included in our

accuracy score calculation.

IV. EXPERIMENTAL RESULTS

In our experiments, we have two partial discharge (PD)

locations each with 26 possible coordinates. To quantify

our PD location methods, we measure the number of those

coordinates that the identified PD encompasses within a fixed

Fig. 10. Localization Results of Multilateration on PD1

error range. The error range is a cube around the designated

point. We first remove outlier points using DBSCAN, and then

find the accuracy, which is the percent of localized origins

which contain a PD coordinate, as well as the total hits,

which is the total number of coordinates encompassed by all of

the localized origins, including outliers. A good result would

have few outliers, high accuracy and total hits. This method of

evaluation is selected since there is no single point to measure

our prediction against.

Partial Discharge Localization Method

Our first goal is to select a localization method to find the

PD source once we have the signal times. Using the standard

cumulative energy method to find the signal times, we test

multilateration and FDTD methods using the PD1 and PD2

samples. With an error range of 500 mm (1000 mm diameter

cube around point), we compare the accuracy and total hits

using the two localization methods.

The 3D plots in Figures 10 and 11 show the coordinates

of the actual and predicted PDs. The yellow triangles indicate

outliers, which are not included in the accuracy calculations.

The blue squares indicate predicted coordinates that are within

the main cluster (not outliers). The green point is the center

of the blue points, and used as a reference point for the cube,

which is the error range around the center point. The red

circles are the actual possible PD coordinates. As Figure 10

shows, the points localized by multilateration method stretch

to pretty far from the PD coordinates. About half of the points

are not even within the error range.

On the other hand, using FDTD on the same dataset, there

are no outliers, and all of the localized points are within the

500 mm error range, most encompassing multiple possible PD

coordinates as seen in Figures 11. There are very few blue

squares in these figures since many of the localized points

overlap at the identified locations.

Table I shows that FDTD method has a much higher

accuracy in identifying close PD sources than multilateration

method. These results were generated with the cumulative

energy signal timing method, which we use as a basis for
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Fig. 11. Localization Results of FDTD on PD1

TABLE I
LOCALIZATION RESULTS OF FDTD AND MULTILATERATION WITH 500

MM ERROR

Localization Method PD Outliers Accuracy Total Hits

Multilateration
PD1 2 0.4 69
PD2 9 0.79 196

FDTD
PD1 0 1 536
PD2 0 1 238

a comparison. The primary downside to this method is the

time that it takes to generate the FDTD simulation as well as

the inherent error given by the mesh size of FDTD.

Signal Timing Method

The more challenging task is identifying the signal arrival

time in the sensor data with a low SNR. Comparing our

method using the Savitzky-Golay filter (SG filter) with the ex-

isting cumulative energy method, we examine the localization

results using FDTD with a 500 mm error range.

As seen in Table II, most of the methods have a large

number of outliers and low accuracy. While some of the

localized points are fairly close to the PD coordinates, they

TABLE II
LOCALIZATION RESULTS OF SIGNAL TIMING METHODS WITH 500 MM

ERROR

Timing Method PD Outliers Accuracy Total Hits

Threshold
PD1 10 0.42 84
PD2 2 1 376

Envelope
PD1 10 0.92 286
PD2 0 0 0

Data Spread
PD1 4 0.22 104
PD2 13 1 260

Noise Cancellation
PD1 15 0 52
PD2 15 0 30

Wavelength Comparison
PD1 13 0 0
PD2 12 1 142

Moving Average
PD1 13 1 206
PD2 0 1 216

Cumulative Energy
PD1 0 1 536
PD2 0 1 238

SG Filter
PD1 0 1 554
PD2 0 1 382

TABLE III
LOCALIZATION RESULTS OF SIGNAL TIMING METHODS WITH 300 MM

ERROR

Timing Method PD Outliers Accuracy Total Hits

Cumulative Energy
PD1 0 0.91 292
PD2 0 0.13 42

SG Filter
PD1 0 0.95 298
PD2 0 0.48 154

TABLE IV
LOCALIZATION RESULTS OF MULTILATERATION WITH 500 MM ERROR

Timing Method PD Outliers Accuracy Total Hits

Cumulative Energy
PD1 2 0.4 69
PD2 9 0.79 196

SG Filter
PD1 4 0.61 148
PD2 6 0.41 94

are deemed outliers since most of the points are farther. For

instance, the noise cancellation method has a fair number of

hits, but it has low accuracy because most of the points close to

the actual PDs are outliers. Conversely, some methods show

high accuracy since all of the points far from the PDs are

outliers. Examples of this are the envelope and wavelength

comparison methods, which have a case of high accuracy but a

large number of outliers. All of the points from the wavelength

comparison method aside from a small accurate cluster are

deemed outliers, falsely improving the accuracy of the method.

To determine an appropriate method for our data, we want

few outliers, high accuracy and high total hits. This can be

seen in the simple threshold method and the moving average

method for PD2. However, only the cumulative energy and SG

filter methods achieve all three criteria for both PDs. While

both of these timing methods are successful, the SG filter

method captures more PD coordinates than the cumulative

energy method. This means that the points selected by the

SG filter method are more centralized around the possible PD

points, indicating a better prediction.

To further quantify the performance of these methods, we

test PD localization with a smaller error range of 300 mm.

With a tighter error range, the results in Table III indicate that

the SG filter method has better localization accuracy than the

cumulative energy method. The accuracy results for PD2 are

much lower since the noisiest channel in the PD2 data has a

much lower SNR than the noisiest channel in PD1. Since our

sample size only includes about 20 data samples for each PD,

we need to test our methods against more sample data.

We also test our method of the SG filter with multilateration

to determine the error. As Table IV shows, with multilatera-

tion, neither timing method is consistently better in terms of

either outliers or accuracy. Consequently, either the cumulative

energy or SG filter method can be used to approximate the PD

source, since the error from multilateration is greater than the

error from either signal timing method.

Validation Tests

Aside from testing our methods on emulated PD data, as

additional validation, we use the simulated FDTD data to
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Fig. 12. Signal Timing on Simulated Data Channel 1

Fig. 13. Distribution of Error from SG Filter Method

check the signal timings without using the predicted PD source

as the quantifier. To simulate a real signal, we add gaussian

noise to the FDTD data, and test our timing methods on the

noisy data. Figure 12 compares the identified signal timings

in the simulated data given by three different methods. The

blue lines represent the signal, which begins at around 5

nanoseconds. The SG filter method consistently provides the

timing closest to the actual signal arrival, so our method indeed

offers the best timing results.

In addition, using the validation data, the average error from

all of the possible FDTD indices is about 340 mm in terms

of Euclidean distance, which is fairly close to the minimum

300 mm error given by the size of the FDTD indices. Also,

this validation test has a single sample for each mesh point,

so in real cases some outliers would be removed.

The distributions of the FDTD mesh point errors from the

3MVA transformer are shown in Figures 13 and 14. The

prediction errors from the SG filter method are a lot lower

Fig. 14. Distribution of Error from Cumulative Energy Method

than those of the cumulative energy method. This indicates

that there are some indices in the transformer that are harder

to model than others, but on a whole, the SG filter method is

able to predict the behavior of these indices more accurately.

We achieved similar results from the TL1965 transformer,

although with less consistency. This is attributed to the greater

complexity of the TL1965 transformer.

V. DISCUSSION

Our method for locating the source of a partial discharge

involves a number of different tools and configuration parame-

ters. Here is a brief summary of our choices used in Section IV

and possible alternatives for additional work.

An important tool we use in our work is the FDTD

simulation reference table, which contains the signal arrival

times computed from the mesh point voltages. We used the

energy criterion method, which was the best available method

at the start of the work, to compute the reference table. In tests,

we see that this method works quite well; however, through

our work we developed a better method, with which we plan

to update the reference table.

We use four channels (sensors) to locate the PD, since that

is the minimum number of signals required, and because that

is the number of signals that can be captured at once with

the current monitoring hardware. However, there exist more

signals that could be used. Using more signals should improve

the location accuracy of our method.

The specific parameters for the SG filter method were

determined empirically in our experiment. These parameters

include the window size and the order of the Savitzky-Golay

filter as well as the the size of the window identified by the

initial threshold and the range of data that is considered noisy

to be used for the threshold. These parameters can be changed

to improve signal timing performance in other datasets, which

may not have the same frequency or size as the sensor data

that we used.

As seen in our validation tests, the effectiveness of our

method varies on different transformers. This can be attributed

to the different complexities of various transformers, including

metal obstacles or the shape of the transformer. Potentially, we

could adjust the parameters to better fit the properties of the

individual transformer.

VI. CONCLUSION

The goal of our study is to accurately locate the source

of partial discharges in a transformer. We break this task

in two steps: compute the arrival time at each sensor and

then locate the source based on the time differences. We

studied a number of methods to determine the arrival time

from sensor measurements and developed a convolutional filter

based method that works better than all others. We determine

the PD location by performing a reference table lookup for

the arrival time differences for the four sensors. This reference

table is constructed using FDTD simulations on the detailed

structure of the transformer.
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Our convolutional filtering method with the SG filter sig-

nificantly improves our ability to determine arrival time from

the sensor data. In tests with simulated events where the

source locations are known, our convolutional filter produces

the best timing results among all the methods tested. Given

the arrival time values, looking up the source location using

the reference table also produces much more precise locations

than multilateration. Using our method, we are able to locate

the PD to within 500 mm and 300 mm much more frequently

than with other methods. With 500 mm tolerance, our method

consistently achieved more total hits than the existing cumu-

lative energy method. In the PD1 data, the SG filter method

attained 554 hits compared to the 536 hits with the cumulative

energy method, and in the PD2 data, 382 hits versus 238 hits.

With 300 mm tolerance, in the PD1 dataset where the signal-

to-noise ratios are high, the accuracy with cumulative energy

method is 91% and our method is 95%. However, in the high

noise case of the PD2 data, we had a more drastic improvement

from 13% accuracy to 48% with our method.

In future work, we would like to test this method on other

real transformer sensor measurements. With those data, we

can better understand the impact of the signal selection and

the parameters of our SG filter method on the accuracy of the

signal timing procedure.
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